
FNLP: Lab Session 3

Hidden Markov Models - Construction and Use

Aim

The aims of this lab session are to 1) familiarize the students with the POS
tagged corpora and tag sets available in NLTK 2) introduce the HMM tagger
available in NLTK, how to train, tag and evaluate with this tagger 3) build
the transition and emission models needed to train a HMM tagger. Successful
completion of this lab is important as the second assignment for FNLP builds
on some of the concepts and methods that are introduced here. By the end of
this lab session, you should be able to:

• Access corpora tagged with part-of-speech information.

• Train an HMM Tagger, use it to tag sentences and evaluate it on a test
set.

• Compute the transition and emission probabilities.

1 Running NLTK and Python Help

1.1 Running NLTK

NLTK is a Python module, and therefore must be run from within Python. To
get started on DICE, type the following in a terminal window:

$: python

>>> import nltk

1.2 Python Help

Python contains an inbuilt help module that runs in an interactive mode. To
run the interactive help, type:

>>> help()

To exit, press CTRL-d.

If you know the name of the module that you want to get help on, type:

>>> import <module_name>

>>> help(<module_name>)

1



To exit, type “q” (for “quit”).

If you know the name of the module and the method that you want to get help
on, type:

>>> import <module_name>

>>> help(<module_name>.<method_name>)

To exit, type “q” (for “quit”).

2 Introduction

Before continuing with this lab sheet, please download a copy of the lab template
(lab3.py) for this lab from the FNLP course website. This template contains
code that you should use as a starting point when attempting the exercises for
this lab.

In this lab we will look at how to train and use the Hidden Markov Model
(HMM) tagger provided by NLTK.

>>> help(nltk.tag.hmm.HiddenMarkovModelTagger)

>>> help(nltk.tag.hmm.HiddenMarkovModelTagger.train)

The task for which we will train the HMM tagger will be part-of-speech (POS)
tagging. We will also take a closer look at the components of the HMM model.

3 Corpora tagged with part-of-speech informa-

tion

NLTK provides corpora annotated with part-of-speech (POS) information and
some tools to access this information. The Penn Treebank tagset is commonly
used for annotating English sentences. We can inspect this tagset in the follow-
ing way:

>>> nltk.help.upenn_tagset()

Loading lab3.py will show you this, as well as some tagged sentences from the
corpus we will be working with.

The Brown corpus provided with NLTK is also tagged with POS information,
although the tagset is slightly different than the Penn Treebank tagset. Infor-
mation about the Brown corpus tagset can be found here:
http://www.scs.leeds.ac.uk/ccalas/tagsets/brown.html

We can retrieve the tagged sentences in the Brown corpus by calling the tagged sents()
function and looking at an annotated sentence:

>>> tagged_sentences = brown.tagged_sents(categories= ’news’)

>>> print tagged_sentences[29]

2

http://www.scs.leeds.ac.uk/ccalas/tagsets/brown.html


Sometimes it is useful to use a coarser label set in order to avoid data sparsity
or to allow a mapping between the POS labels for different languages. The
Universal tagset was designed to be applicable for all languages:
https://code.google.com/p/universalpostags/.
There are mappings between the POS tagset of several languages and the Uni-
versal tagset. We can access the Universal tags for the Brown corpus sentences
by changing the tagset argument:

>>> tagged_sentences_universal = \

brown.tagged_sents(categories= ’news’, tagset=’universal’)

>>> print tagged_sentences_universal[29]

Exercise 1:

In this exercise we will compute a Frequency Distribution over tags that appear
in the Brown corpus. The template of the function that you have to implement
takes two parameters: one is the category of the text and the other is the tagset
name. You are given the code to retrieve the list of (word, tag) tuples from the
brown corpus corresponding to the given category and tagset.

a. Convert the list of word+tag pairs to a list of tags

b. Using the list of tags to compute a frequency distribution over the tags,
useing FreqDist()

c. Compute the total number of tags in the Frequency Distribution

d. Retrieve the top 10 most frequent tags

Uncomment the test code. What do you observe by comparing the number
of tags and most frequent tags across different genres? What happens when you
change the tagset?

4 Training and Evaluating an HMM Tagger

NLTK provides a module for training a Hidden Markov Model for sequence tag-
ging.

>>> help(nltk.tag.hmm.HiddenMarkovModelTagger)

We can train the HMM for POS tagging given a labelled dataset. In Section 1
of this lab we learned how to access the labelled sentences of the Brown corpus.
We will use this dataset to study the effect of the size of the training corpus on
the accuracy of the tagger.

Exercise 2:

In this exercise we will train a HMM tagger on a training set and evaluate it
on a test set. The template of the function that you have to implement takes
two parameters: a sentence to be tagged and the size of the training corpus in
number of sentences. You are given the code that creates the training and test
datasets from the tagged sentences in the Brown corpus.

3

https://code.google.com/p/universalpostags/


a. Train a Hidden Markov Model tagger on the training dataset. Refer to
help(nltk.tag.hmm.HiddenMarkovModelTagger.train) if necessary.

b. Use the trained model to tag the sentence

c. Use the trained model to evaluate the tagger on the test dataset

Uncomment the test code. Look at the tagged sentence and the accuracy
of the tagger. How does the size of the training set affect the accuracy?

5 Computing the Transition and Emission Prob-

abilities

In the previous exercise we learned how to train and evaluate an HMM tagger.
We have used the HMM tagger as a black box and have seen how the training
data affects the accuracy of the tagger. In order to get a better understanding
of the HMM we will look at the two components of this model:

• The transition model

• The emission model

The transition model estimates P (tagi+1|tagi), the probability of a POS tag
at position i + 1 given the previous tag (at position i). The emission model

estimates P (word|tag), the probability of the observed word given a tag.

Given the above definitions, we will need to learn a Conditional Probability
Distribution for each of the models.

>>> help(nltk.probability.ConditionalProbDist)

Exercise 3:

In this exercise we will estimate the emission model. In order to compute the
Conditional Probability Distribution of P (word|tag) we first have to compute
the Conditional Frequency Distribution of a word given a tag.

>>> help(nltk.probability.ConditionalFreqDist)

>>> help(nltk.probability.ConditionalProbDist)

The constructor of the ConditionalFreqDist class takes as input a list of tuples,
each tuple consisting of a condition and an observation. For the emission model,
the conditions are tags and the observations are the words. The template of the
function that you have to implement takes as argument the list of tagged words
from the Brown corpus.

a. Build the dataset to be passed to the ConditionalFreqDist() construc-
tor. Words should be lowercased. Each item of data should be a tuple of
tag (a condition) and word (an observation).

4



b. Compute the Conditional Frequency Distribution of words given tags.

c. Return the top 10 most frequent words given the tag NN.

d. Compute the Conditional Probability Distribution for the above Condi-
tional Frequency Distribution. Use the MLEProbDist estimator when call-
ing the ConditionalProbDist constructor.

e. Compute the probabilities

P (year|NN)

P (year|DT )

Uncomment the test code. Look at the estimated probabilities. Why is
P (year|DT ) = 0 ? What is emission FD[’NN’][’year’]? Contrast that with
emission FD[’DT’][’year’]?

Whatare the problems with having zero probabilities and what can be done to
avoid this?

Exercise 4:

In this exercise we will estimate the transition model. In order to compute the
Conditional Probability Distribution of P (tagi+1|tagi) we first have to compute
the Conditional Frequency Distribution of a tag at position i+1 given the pre-
vious tag.

>>> help(nltk.probability.ConditionalFreqDist)

>>> help(nltk.probability.ConditionalProbDist)

The constructor of the ConditionalFreqDist class takes as input a list of tu-
ples, each tuple consisting of a condition and an observation. For the transition
model, the conditions are tags at position i and the observations are tags at
position i+ 1. The template of the function that you have to implement takes
as argument the list of tagged sentences from the Brown corpus.

a. Build the dataset to be passed to the ConditionalFreqDist() construc-
tor. Each item in your data should be a pair of condition and observation:
(tagi, tagi+1)

b. Compute the Conditional Frequency Distribution of a tag at position i+1
given the previous tag.

c. Compute the Conditional Probability Distribution for the above Condi-
tional Frequency Distribution. Use the MLEProbDist estimator when call-
ing the ConditionalProbDist constructor.

d. Compute the probabilities

P (NN |V BD)

P (NN |DT )

Uncomment the test code. Are the results what you would expect? The
sequence DT NN seems very probable. How will this affect the tagging of real,
longer, sequences?

5



6 Going further

Modify your code for exercise 3 to use a different estimator, to introduce some
smoothing, and compare the results with the original.

In exercise 4 we didn’t do anything about the boundaries. Modify your code for
exercise 4 to use <s> at the beginning of every sentence and </s> at the end.
Explore the resulting conditional probabilities. What is the most likely tag at
the beginning of a sentence? At the end?

6


	Running NLTK and Python Help
	Running NLTK
	Python Help

	Introduction
	Corpora tagged with part-of-speech information
	Training and Evaluating an HMM Tagger
	Computing the Transition and Emission Probabilities
	Going further

