Formal Modeling in Cognitive Science 1 (2005-2006)

School of Informatics, University of Edinburgh

Lecturers: Mark van Rossum, Frank Keller

Solutions for Tutorial 9: Entropy; Mutual Information

Week 10 (13-17 March, 2006)

1. Relationship between Entropy and Mutual Information

Let X and Y be two non-independent random variables. You know the entropies $H(X)$ and $H(Y)$ and the conditional entropies $H(X \mid Y)$ and $H(Y \mid X)$.
(a) What is the mutual information of X with itself?

Solution:

$$
I(X ; X)=H(X)-H(X \mid X)=H(X)
$$

since $H(X \mid X)=0$.
(b) What is the joint entropy $H(X, Y)$, and what would it be if the random variables X and Y were independent?
Solution: If X and Y are not independent, then:

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

If X and Y are independent, then $H(Y \mid X)=H(Y)$:

$$
H(X, Y)=H(X)+H(Y)
$$

(c) Give an alternative expression for $I(X ; Y)$ in terms of the joint entropy $H(X, Y)$ and the entropies $H(X)$ and $H(Y)$.
Solution: We know that:

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

We know that for joint entropy, the following holds:

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

Therefore:

$$
H(X \mid Y)=H(X, Y)-H(Y)
$$

We can now compute mutual information as follows:

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(X)-(H(X, Y)-H(Y)) \\
& =H(X)-H(X, Y)+H(Y)
\end{aligned}
$$

2. Computing Entropy and Mutual Information

Let X and Y be a random variables over the sample space $S=\{a, b, c, d\}$. The joint distribution of these two random variables is as follows:

		x			
		a	b	c	d
	a	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
y	b	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$	0
	c	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{16}$	0
	d	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{16}$	0

(a) Write down the marginal distribution for X and compute the entropy $H(X)$.

Solution:

$$
\begin{aligned}
f(a) & =f(a, a)+f(b, a)+f(c, a)+f(d, a) \\
& =\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{32} \\
& =\frac{1}{4} \\
f(b) & =f(a, b)+f(b, b)+f(c, b)+f(d, b) \\
& =\frac{1}{16}+\frac{1}{8}+\frac{1}{32}+\frac{1}{32} \\
& =\frac{1}{4} \\
f(c)= & f(a, c)+f(b, c)+f(c, c)+f(d, c) \\
& =\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16} \\
& =\frac{1}{4} \\
f(d) & =f(a, d)+f(b, d)+f(c, d)+f(d, d) \\
& =\frac{1}{4}+0+0+0 \\
& =\frac{1}{4} \\
& H(X)=-\sum_{x \in X} f(x) \log f(x) \\
& =-4 \cdot \frac{1}{4} \log \frac{1}{4} \\
& =-\log \frac{1}{4}=2
\end{aligned}
$$

(b) Write down the marginal distribution for Y and compute the entropy $H(Y)$.

Solution: See question (2a).
(c) What is the joint entropy $H(X, Y)$ of the two random variables?

Solution: To calculate the joint entropy $H(X, Y)$ you need the conditional entropy $H(Y \mid X)$. For this you need the conditional distribution $f(y \mid x)$, which can be calculated as:

$$
f(y \mid x)=\frac{f(y, x)}{f(x)}
$$

for all values of X and Y. Alternatively, use the definition of joint entropy and calculate the joint entropy directly from the distribution $f(x, y)$:

$$
H(X, Y)=-\sum_{x \in X} \sum_{y \in Y} f(x, y) \log f(x, y)
$$

(d) What is the conditional entropy $H(Y \mid X)$?

Solution: See question (2c).
(e) What is the mutual information $I(X ; Y)$ between the two random variables?

Solution: It is easy now to calculate the mutual information since we have worked out $H(X)$ and $H(X \mid Y)$:

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Alternatively, use the definition of mutual information:

$$
I(X ; Y)=\sum_{x \in X} \sum_{y \in Y} f(x, y) \log \frac{f(x, y)}{f(x) f(y)}
$$

3. Twenty Questions

Consider a variant of the game Twenty Questions in which you have to guess which one of seven horses won a race. The probability distribution over winning horses is as follows:

horse	1	2	3	4	5	6	7
prob. of winning	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$

(a) Assuming an optimal strategy, what is the minimum number of yes/no questions that you need to ask in order to find out which horse won?
Solution: The minimum number of questions is given by the entropy of the probability distribution:

$$
\begin{aligned}
H(X) & =-\sum_{x \in X} f(x) \log f(x) \\
& =\frac{1}{2} \log 4+\frac{3}{8} \log 8+\frac{1}{8} \log 16=1+\frac{9}{8}+\frac{1}{2}=2.625
\end{aligned}
$$

(b) What is the expected number of questions if you adopt the following strategy: first ask about the horse with the highest probability, then about the horse with the second highest probability, etc.?

Solution:

horse	1	2	3	4	5	6	7
prob. of winning	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$
no. of questions	1	2	3	4	5	6	6

We can now compute the expectation of the number of questions that we must ask:

$$
\begin{aligned}
E(X) & =\sum_{x \in X} x f(x) \\
& =1 \cdot \frac{1}{4}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+4 \cdot \frac{1}{8}+5 \cdot \frac{1}{8}+6 \cdot \frac{1}{16}+6 \cdot \frac{1}{16}=3
\end{aligned}
$$

This means that this strategy is not optimal, as $E(X)>H(X)$.

