Formal Modeling in Cognitive Science 1 (2005-2006)

School of Informatics, University of Edinburgh

Lecturers: Mark van Rossum, Frank Keller

Solutions for Tutorial 8: Expectation and Variance; Special Distributions

Week 9 (6-10 March, 2006)

1. Expectation and Variance

(a) For the discrete random variable X with the following probability distribution:

$$
f(x)=\frac{|x-2|}{7} \text { for } x=-1,0,1,2,3
$$

determine $E(X)$ and $\operatorname{var}(X)$. Now assume the functions $g(X)=3 X+2$ and $h(X)=X^{2}$ and determine $E(g(X))$ and $E(h(X))$.

$$
\begin{aligned}
& \text { Solution: } \quad E(X)=\sum_{x} x \cdot f(x)=-1 \frac{3}{7}+0 \frac{2}{7}+1 \frac{1}{7}+2 \frac{0}{7}+3 \frac{1}{7}=\frac{1}{7} \\
& \operatorname{var}(X)=\sum_{x}(x-\mu)^{2} \cdot f(x)=\left(-1-\frac{1}{7}\right)^{2} \frac{3}{7}+\left(0-\frac{1}{7} 2^{2} \frac{2}{7}+\left(1-\frac{1}{7}\right)^{2} \frac{1}{7}+\left(2-\frac{1}{7}\right)^{2} \frac{0}{7}+\left(3-\frac{1}{7}\right)^{2} \frac{1}{7}\right. \\
& E(g(X))=\sum_{x} 3 x+2 \cdot f(x)=-1 \frac{3}{7}+2 \frac{2}{7}+5 \frac{1}{7}+8 \frac{0}{7}+11 \frac{1}{7}=\frac{16}{7} \\
& E(h(X))=\sum_{x} x^{2} \cdot f(x)=(-1)^{2} \frac{3}{7}+0^{2} \frac{2}{7}+1^{2} \frac{1}{7}+2^{2} \frac{0}{7}+3^{2} \frac{1}{7}=\frac{13}{7}
\end{aligned}
$$

(b) In Chebyshev's theorem, which form does the inequality take for $k=1,2,3,4$?

Solution: The general form of Chebyshev's theorem is:

$$
P(|x-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}}
$$

So we get for $k=1,2,3,4$:

$$
\begin{aligned}
P(|x-\mu|<\sigma) & \geq 0 \\
P(|x-\mu|<2 \sigma) & \geq \frac{3}{4} \\
P(|x-\mu|<3 \sigma) & \geq \frac{8}{9} \\
P(|x-\mu|<4 \sigma) & \geq \frac{15}{16}
\end{aligned}
$$

2. Covariance

The covariance of two random variables X and Y with the joint distribution $f(x, y)$ is defined as:

$$
\operatorname{cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) \cdot f(x, y)
$$

where μ_{X} and μ_{Y} are the means of X and Y.
Assume that X and Y have the following joint distribution:

(x, y)	0	1	2
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$
1	$\frac{2}{9}$	$\frac{1}{6}$	0
2	$\frac{1}{36}$	0	0

(a) Compute the marginal distributions of X and Y.
(b) Use the marginal distributions to compute μ_{X} and μ_{Y}.
(c) Now compute the covariance of X and Y.

Solution:

(a) The marginal distributions are:

(x, y)	0	1	2	
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{7}{12}$
1	$\frac{2}{9}$	$\frac{1}{6}$	0	$\frac{7}{18}$
2	$\frac{1}{36}$	0	0	$\frac{1}{36}$
	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{12}$	

(b)

$$
\begin{aligned}
& \mu_{X}=0 \frac{5}{12}+1 \frac{1}{2}+2 \frac{1}{12}=\frac{2}{3} \\
& \mu_{Y}=0 \frac{7}{12}+1 \frac{7}{18}+2 \frac{1}{36}=\frac{4}{9}
\end{aligned}
$$

(c)

$$
\operatorname{cov}(X, Y)=\sum_{x} \sum_{y}\left(x-\frac{2}{3}\right)\left(y-\frac{4}{9}\right) \cdot f(x, y)=-\frac{7}{54}
$$

3. Special Distributions

(a) A scientist claims that 1 in 10 car accidents are due to driver fatigue. Using the formula for the binomial distribution, compute the probability that at most 3 of 5 accidents that happen on a given day are due to driver fatigue.

Solution:

$$
\begin{gathered}
b(0 ; 5,0.1)+b(1 ; 5,0.1)+b(2 ; 5,0.1)+b(3 ; 5,0.1)= \\
\binom{5}{0} 0.1^{0} 0.9^{5}+\binom{5}{1} 0.1^{1} 0.9^{4}+\binom{5}{2} 0.1^{2} 0.9^{3}+\binom{5}{3} 0.1^{3} 0.9^{2}=0.0086
\end{gathered}
$$

(b) In a reaction time experiment, the response latency in seconds is distributed according to the standard normal distribution. What is the probability that the reaction time is between 0 and 1 seconds?
Solution:

$$
P(0<X<1)=\int_{0}^{1} n(x ; 0,1) d x=\int_{0}^{1} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=0.3413
$$

We can work this out by integrating, or because we know that for the normal distribution, $P(|x-\mu|<\sigma)=0.6826$, hence for the standard normal distribution $P(x<1)=$ $0.6826 / 2=0.3413$.

