Formal Modeling in Cognitive Science 1 (2005-2006)

School of Informatics, University of Edinburgh
Lecturers: Mark van Rossum, Frank Keller

Tutorial 8: Expectation and Variance; Special Distributions

Week 9 (6-10 March, 2006)

1. Expectation and Variance

(a) For the discrete random variable X with the following probability distribution:

$$
f(x)=\frac{|x-2|}{7} \text { for } x=-1,0,1,2,3
$$

determine $E(X)$ and $\operatorname{var}(X)$. Now assume the functions $g(X)=3 X+2$ and $h(X)=X^{2}$ and determine $E(g(X))$ and $E(h(X))$.
(b) In Chebyshev's theorem, which form does the inequality take for $k=1,2,3,4$?

2. Covariance

The covariance of two random variables X and Y with the joint distribution $f(x, y)$ is defined as:

$$
\operatorname{cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) \cdot f(x, y)
$$

where μ_{X} and μ_{Y} are the means of X and Y.
Assume that X and Y have the following joint distribution:

(x, y)	0	1	2
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$
1	$\frac{2}{9}$	$\frac{1}{6}$	0
2	$\frac{1}{36}$	0	0

(a) Compute the marginal distributions of X and Y.
(b) Use the marginal distributions to compute μ_{X} and μ_{Y}.
(c) Now compute the covariance of X and Y.
3. Special Distributions
(a) A scientist claims that 1 in 10 car accidents are due to driver fatigue. Using the formula for the binomial distribution, compute the probability that at most 3 of 5 accidents that happen on a given day are due to driver fatigue.
(b) In a reaction time experiment, the response latency in seconds is distributed according to the standard normal distribution. What is the probability that the reaction time is between 0 and 1 seconds?

