Formal Modeling in Cognitive Science 1 (2005-2006)

School of Informatics, University of Edinburgh

Lecturers: Mark van Rossum, Frank Keller

Solutions for Tutorial 7: Random Variables and Probability Distributions

Week 8 (27 February-3 March, 2006)

1. Probability Distributions and Probability Densities

(a) For each of the following, determine whether the given function can serve as the probability distribution for a random variable with the given range.
i. $f(x)=\frac{x-2}{5}$ for $x=1,2,3,4,5$
ii. $f(x)=\frac{x^{2}}{30}$ for $x=0,1,2,3,4$
iii. $f(x)=\frac{1}{5}$ for $x=0,1,2,3,4,5$

Solution:

i. No, because $f(1)=\frac{1-2}{5}=-\frac{1}{5}<0$
ii. Yes, because $\sum_{x=0}^{4} f(x)=\frac{0^{2}}{30}+\frac{1^{2}}{30}+\frac{2^{2}}{30}+\frac{3^{2}}{30}+\frac{4^{2}}{30}=0+\frac{1}{30}+\frac{4}{30}+\frac{9}{30}+\frac{16}{30}=\frac{30}{30}=1$
iii. No, because $\sum_{x=0}^{5} f(x)=6 \cdot \frac{1}{5}=\frac{6}{5}>1$
(b) Find the cumulative distribution $F(x)$ for the random variable with the probability distribution:

$$
f(x)=\frac{x}{15} \text { for } x=1,2,3,4,5
$$

Solution:

$$
F(x)=\sum_{t \leq x} f(t)= \begin{cases}0 & \text { for } x<1 \\ \frac{1}{15} & \text { for } 1 \leq x<2 \\ \frac{3}{15} & \text { for } 2 \leq x<3 \\ \frac{6}{15} & \text { for } 3 \leq x<4 \\ \frac{10}{15} & \text { for } 4 \leq x<5 \\ 1 & \text { for } x \geq 5\end{cases}
$$

(c) The probability density function of the random variable X is given by:

$$
f(x)= \begin{cases}\frac{1}{8}(x+1) & \text { for } 2 \leq x<4 \\ 0 & \text { elsewhere }\end{cases}
$$

i. Find $f(2<X<3)$.
ii. Find the cumulative distribution $F(x)$.

Solution:

i. Compute the integral of $f(x)$ for $2<X<3$:

$$
\begin{aligned}
P(2 \leq X \leq 3) & =\int_{2}^{3} f(x) d x=\int_{2}^{3} \frac{1}{8}(x+1) d x=\int_{2}^{3} \frac{1}{8} x+\frac{1}{8} d x=\frac{1}{16} x^{2}+\left.\frac{1}{8} x\right|_{2} ^{3} \\
& =\left(\frac{3^{2}}{16}+\frac{3}{8}\right)-\left(\frac{2^{2}}{16}+\frac{2}{8}\right)=\frac{7}{16}
\end{aligned}
$$

ii. Compute the integral of $f(x)$ for $-\infty<X<x$:

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t=\int_{2}^{x} \frac{1}{8} x+\frac{1}{8} d x=\frac{1}{16} x^{2}+\left.\frac{1}{8} x\right|_{2} ^{x} \\
& =\left(\frac{1}{16} x^{2}+\frac{1}{8} x\right)-\left(\frac{2^{2}}{16}+\frac{2}{8}\right)=\frac{1}{16} x^{2}+\frac{1}{8} x-\frac{1}{2}
\end{aligned}
$$

Therefore the cumulative distribution function is:

$$
F(x)= \begin{cases}0 & \text { for } x \leq 2 \\ \frac{1}{16} x^{2}+\frac{1}{8} x-\frac{1}{2} & \text { for } 2<x<4 \\ 1 & \text { for } x \geq 4\end{cases}
$$

2. Joint and Marginal Distributions

Two psychometric tests are administered to a group of 10 experimental subjects. The first test is a standardized aptitude test used for university admissions. It returns a score between 0 and 100 . Let X be the random variable denoting the aptitude test score. The second psychometric test is a memory test. It measures the digit span, i.e., the number of digits in a sequence that a subject is able to remember before they make a mistake. Let Y be the random variable that denotes the digit span, ranging from 1 to 5 . The results of the experiment are given in the following table:

Subject	1	2	3	4	5	6	7	8	9	10
x	60	50	40	50	60	30	30	20	30	50
y	5	3	3	3	3	3	3	4	4	4

(a) Compute the distributions of X and Y.
(b) Compute the joint distribution of X and Y.
(c) Compute the marginal distributions of X and Y.
(d) Are X and Y independent?
(e) Compute the conditional distributions of X given $Y=3$.

Solution:

(a)

$f(x)$	0.1	0.3	0.1	0.3	0.2
y	3	4	5		

\qquad
(b)

(x, y)	20	30	40	50	60
3	0	0.2	0.1	0.2	0.1
4	0.1	0.1	0	0.1	0
5	0	0	0	0	0.1

(c)

(x, y)	20	30	40	50	60	$\sum_{x} f(x, y)$
3	0	0.2	0.1	0.2	0.1	0.6
4	0.1	0.1	0	0.1	0	0.3
5	0	0	0	0	0.1	0.1
$\sum_{y} f(x, y)$	0.1	0.3	0.1	0.3	0.2	

(d) No, for example $f(40,3)=0.1$, but $\sum_{y} f(40, y) \cdot \sum_{x} f(x, 3)=0.1 \cdot 0.6=0.06$
(e)

x	20	30	40	50	60
$y=3$	0	$1 / 3$	$1 / 6$	$1 / 3$	$1 / 6$

