Formal Modeling in Cognitive Science 1 (2005–2006)

School of Informatics, University of Edinburgh Lecturers: Mark van Rossum, Frank Keller

Solutions for Tutorial 7: Random Variables and Probability Distributions

Week 8 (27 February-3 March, 2006)

1. Probability Distributions and Probability Densities

(a) For each of the following, determine whether the given function can serve as the probability distribution for a random variable with the given range.

i.
$$f(x) = \frac{x-2}{5}$$
 for $x = 1, 2, 3, 4, 5$
ii. $f(x) = \frac{x^2}{30}$ for $x = 0, 1, 2, 3, 4$
iii. $f(x) = \frac{1}{5}$ for $x = 0, 1, 2, 3, 4, 5$

Solution:

- i. No, because $f(1) = \frac{1-2}{5} = -\frac{1}{5} < 0$
- ii. Yes, because $\sum_{x=0}^{4} f(x) = \frac{0^2}{30} + \frac{1^2}{30} + \frac{2^2}{30} + \frac{3^2}{30} + \frac{4^2}{30} = 0 + \frac{1}{30} + \frac{4}{30} + \frac{9}{30} + \frac{16}{30} = \frac{30}{30} = 1$ iii. No, because $\sum_{x=0}^{5} f(x) = 6 \cdot \frac{1}{5} = \frac{6}{5} > 1$
- (b) Find the cumulative distribution F(x) for the random variable with the probability distribution:

$$f(x) = \frac{x}{15}$$
 for $x = 1, 2, 3, 4, 5$

Solution:

$$F(x) = \sum_{t \le x} f(t) = \begin{cases} 0 & \text{for } x < 1\\ \frac{1}{15} & \text{for } 1 \le x < 2\\ \frac{3}{15} & \text{for } 2 \le x < 3\\ \frac{6}{15} & \text{for } 3 \le x < 4\\ \frac{10}{15} & \text{for } 4 \le x < 5\\ 1 & \text{for } x \ge 5 \end{cases}$$

(c) The probability density function of the random variable *X* is given by:

$$f(x) = \begin{cases} \frac{1}{8}(x+1) & \text{for } 2 \le x < 4\\ 0 & \text{elsewhere} \end{cases}$$

- i. Find f(2 < X < 3).
- ii. Find the cumulative distribution F(x).

Solution:

i. Compute the integral of f(x) for 2 < X < 3:

$$P(2 \le X \le 3) = \int_{2}^{3} f(x)dx = \int_{2}^{3} \frac{1}{8}(x+1)dx = \int_{2}^{3} \frac{1}{8}x + \frac{1}{8}dx = \frac{1}{16}x^{2} + \frac{1}{8}x\Big|_{2}^{3}$$
$$= (\frac{3^{2}}{16} + \frac{3}{8}) - (\frac{2^{2}}{16} + \frac{2}{8}) = \frac{7}{16}$$

ii. Compute the integral of f(x) for $-\infty < X < x$:

$$F(x) = \int_{-\infty}^{x} f(t)dt = \int_{2}^{x} \frac{1}{8}x + \frac{1}{8}dx = \frac{1}{16}x^{2} + \frac{1}{8}x\Big|_{2}^{x}$$
$$= (\frac{1}{16}x^{2} + \frac{1}{8}x) - (\frac{2^{2}}{16} + \frac{2}{8}) = \frac{1}{16}x^{2} + \frac{1}{8}x - \frac{1}{2}$$

Therefore the cumulative distribution function is:

$$F(x) = \begin{cases} 0 & \text{for } x \le 2\\ \frac{1}{16}x^2 + \frac{1}{8}x - \frac{1}{2} & \text{for } 2 < x < 4\\ 1 & \text{for } x \ge 4 \end{cases}$$

2. Joint and Marginal Distributions

Two psychometric tests are administered to a group of 10 experimental subjects. The first test is a standardized aptitude test used for university admissions. It returns a score between 0 and 100. Let X be the random variable denoting the aptitude test score. The second psychometric test is a memory test. It measures the digit span, i.e., the number of digits in a sequence that a subject is able to remember before they make a mistake. Let Y be the random variable that denotes the digit span, ranging from 1 to 5. The results of the experiment are given in the following table:

Subject	1	2	3	4	5	6	7	8	9	10
x	60	50	40	50	60	30	30	20	30	50
у	5	3	3	3	3	3	3	4	4	4

(a) Compute the distributions of *X* and *Y*.

(b) Compute the joint distribution of *X* and *Y*.

(c) Compute the marginal distributions of *X* and *Y*.

- (d) Are X and Y independent?
- (e) Compute the conditional distributions of *X* given Y = 3.

Solution:

(a)							_				
()	x	20	30	40	50	60					
	f(x)	0.1	0.3	0.1	0.3	0.2					
	<i>y</i>	3	4	5			-				
	f(y)	0.6	0.3	0.1							
(b)											
(-)	(x,y)	20	30	40	50	60					
	3	0	0.2	0.1	0.2	0.1	_				
	4	0.1	0.1	0	0.1	0					
	5	0	0	0	0	0.1					
(c)							_	-			
	(x,y)		20	30	40	50	60	$\sum_{x} f(x,y)$			
	3		0	0.2	0.1	0.2	0.1	0.6			
	4		0.1	0.1	0	0.1	0	0.3			
	5		0	0	0	0	0.1	0.1			
	$\sum_{y} f(x,y)$		0.1	0.3	0.1	0.3	0.2				
(d)	No, for	exan	ple f	(40, 3)) = 0.1	l, but	$\sum_{y} f($	$(40,y)\cdot\sum_{x}f($	(x,3) = 0	$.1 \cdot 0.6 = 0$.06
(e)	x	20	30	40	50	60	_				

y = 3 0 1/3 1/6 1/3 1/6