Formal Modeling in Cognitive Science 1 (2005-2006)

School of Informatics, University of Edinburgh

Lecturers: Mark van Rossum, Frank Keller

Tutorial 7: Random Variables and Probability Distributions

Week 8 (27 February-3 March, 2006)

1. Probability Distributions and Probability Densities

(a) For each of the following, determine whether the given function can serve as the probability distribution for a random variable with the given range.
i. $f(x)=\frac{x-2}{5}$ for $x=1,2,3,4,5$
ii. $f(x)=\frac{x^{2}}{30}$ for $x=0,1,2,3,4$
iii. $f(x)=\frac{1}{5}$ for $x=0,1,2,3,4,5$
(b) Find the cumulative distribution $F(x)$ for the random variable with the probability distribution:

$$
f(x)=\frac{x}{15} \text { for } x=1,2,3,4,5
$$

(c) The probability density function of the random variable X is given by:

$$
f(x)= \begin{cases}\frac{1}{8}(x+1) & \text { for } 2 \leq x<4 \\ 0 & \text { elsewhere }\end{cases}
$$

i. Find $f(2<X<3)$.
ii. Find the cumulative distribution $F(x)$.

2. Joint and Marginal Distributions

Two psychometric tests are administered to a group of 10 experimental subjects. The first test is a standardized aptitude test used for university admissions. It returns a score between 0 and 100. Let X be the random variable denoting the aptitude test score. The second psychometric test is a memory test. It measures the digit span, i.e., the number of digits in a sequence that a subject is able to remember before they make a mistake. Let Y be the random variable that denotes the digit span, ranging from 1 to 5 . The results of the experiment are given in the following table:

Subject	1	2	3	4	5	6	7	8	9	10
x	60	50	40	50	60	30	30	20	30	50
y	5	3	3	3	3	3	3	4	4	4

(a) Compute the distributions of X and Y.
(b) Compute the joint distribution of X and Y.
(c) Compute the marginal distributions of X and Y.
(d) Are X and Y independent?
(e) Compute the conditional distributions of X given $Y=3$.

