Formal Modeling in Cognitive Science 1 (2005-2006)

School of Informatics, University of Edinburgh
Lecturers: Mark van Rossum, Frank Keller

Solutions for Tutorial 6: Combinatorics, Basic Probability, Bayes’ Theorem

Week 7 (20-24 February 2006)

1. Combinatorics

(a) Assume that all monosyllabic words of English consist of exactly three letters. The first letter can be a consonant or a vowel, the second letter has to be a vowel, and the third letter has to be a consonant. Let the set of vowel be $\{\mathrm{a}, \mathrm{e}, \mathrm{i} \mathrm{o}, \mathrm{u}\}$, the set of consonants the complement of this set.
i. How many three-letter words are there if a given letter can occur more than once? Solution: $26 \cdot 5 \cdot 21=2730$
ii. How many three-letter words are there if a given letter can occur only once?

Solution:

First letter is a consonant: $21 \cdot 5 \cdot 20=2100$
First letter is a vowel: $5 \cdot 4 \cdot 21=420$
Total: 2520
(b) For a psychological experiment, you want to recruit subjects from a class of 20 students. The subjects have to participate in the experiment in pairs.
i. In how many different ways can you choose 10 ordered pairs of subjects?

Solution: There are 20 ! ways of ordering the 20 students, and 10 ! ways of ordering 10 pairs of subjects. Hence the overall number of combinations is $\frac{20!}{10!}$.
ii. In how many different ways can you choose 10 unordered pairs of subjects?

Solution: For each pair, there are $2!=2$ ways of ordering the elements of the pair, hence for 10 pairs, that's 2^{10} orders. We have to divide the solution of the previous question by this. Hence the overall number of combinations is $\frac{20!}{10!\cdot 2^{10}}$.

2. Basic Probability

(a) Let A and B be two events with $P(A)=0.59$ and $P(B)=0.30$ and $P(A \cap B)=0.21$. Compute the following probabilities:
i. $P(A \cup B)$
ii. $P(A \cap \bar{B})$
iii. $P(\bar{A} \cup \bar{B})$
iv. $P(\bar{A} \cap \bar{B})$

Solution:

i. $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.68$
ii. $P(A \cap \bar{B})=P(A)-P(A \cap B)=0.38$
iii. $P(\bar{A} \cup \bar{B})=P(\overline{A \cap B})=1-P(A \cap B)=0.79$
iv. $P(\bar{A} \cap \bar{B})=P(\overline{A \cup B})=1-P(A \cup B)=0.32$
(b) In linguistics, we are often interested in $P\left(w_{n+1} \mid w_{n}\right)$, the probability that a word w_{n+1} occurs given that the previous word is $w_{n} .\left(P\left(w_{n+1} \mid w_{n}\right)\right.$ is sometimes called a transitional probability.)
i. Assume you know the transitional probabilities $P($ spotted \mid the $), P(\operatorname{dog} \mid$ spotted $)$, and $P($ the $)$. What's the probability of the sequence the spotted dog?
Solution: The generalized multiplication rule is: $P(A \cap B \cap C)=$ $P(A) P(B \mid A) P(C \mid A \cap B)$ (see Miller \& Miller, p. 33). It follows that $P($ the \cap spotted \cap dog $)=P($ the $) P($ spotted \mid the $) P(\operatorname{dog} \mid$ the \cap spotted $)$. We can approximate this by assuming that $P(\operatorname{dog} \mid$ the \cap spotted $)=P(d o g \mid$ spotted $)$.
ii. Assume that you know that the word amok can follow the words run, running, and ran, which occur with the probabilities $P($ run $)=0.5, P$ (running $)=0.25$, and $P($ ran $)=0.25$. You also know that the transitional probabilities $P($ amok \mid run $)=$ $0.3, P($ amok \mid running $)=0.2$, and $P($ amok \mid ran $)=0.1$. What is the overall probability of seeing amok, i.e., $P($ amok) ?
Solution: We can apply the rule of total probability: $P($ amok $)=$ $P($ run $) P($ amok \mid run $)+P($ running $) P($ amok \mid running $)+P($ ran $) P($ amok \mid ran $)=$ $0.5 \cdot 0.3+0.25 \cdot 0.2+0.25 \cdot 0.1=0.225$.
(c) A balanced die is tossed twice. Let A be the event that an even number comes up on the first toss, B be the event that an even number comes up on the second toss, and C the event that both tosses result in the same number. Which of the events A, B, and C dependent, which ones are independent?
Solution: The events A, B, and C are pairwise independent. $A=$ $\{(2,1),(2,2), \ldots,(4,1),(4,2), \ldots,(6,1),(6,2), \ldots\}$, hence $P(A)=\frac{18}{36}=\frac{1}{2}$ by the rule of equally likely outcomes. In the same way, you can work out $P(B)=\frac{18}{36}=\frac{1}{2}$ and $P(A \cap B)=\frac{9}{36}=\frac{1}{4}$. Hence $P(A) P(B)=P(A \cap B)$, so A and B are independent. The same computation can be used to show the independence of A and C and B and C.

3. Bayes' Theorem

Assume that the prevalence of the disease ritengitis in the general population 1 in 500. Fever is a symptom of ritengitis, which is present in 3 in 10 cases. Fever is also a symptom of the disease mesiopathy, present in 7 in 10 cases. The prevalence of mesiopathy is 1 in 100 . If a patient presents with fever, what is the probability that they have ritengitis?
Solution: $P(R)=\frac{1}{500} ; P(F \mid R)=\frac{3}{10} ; P(F \mid M)=\frac{7}{10} ; P(M)=\frac{1}{100}$
Using Bayes' Theorem: $P(R \mid F)=\frac{P(R) P(F \mid R)}{P(R) P(F \mid R)+P(M) P(F \mid M)}=\frac{\frac{1}{500} \cdot \frac{3}{10}}{\frac{1}{500} \cdot \frac{3}{10}+\frac{1}{100} \cdot \frac{7}{10}}=\frac{\frac{3}{3000}}{\frac{3}{5000}+\frac{7}{1000}}=\frac{3}{38}=$ 0.0789

