Application: Discovering Collocations Formal Modeling in Cognitive Science • What are Collocations? Lecture 27: Application of Mutual Information; Codes • The Naive Approach • Using Mutual Information Frank Keller 2 Codes School of Informatics University of Edinburgh • Source Codes keller@inf.ed.ac.uk • Properties of Codes March 12, 2006 ◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで Frank Keller Formal Modeling in Cognitive Science Frank Keller Formal Modeling in Cognitive Science

Application: Discovering Collocations Codes	What are Collocations? The Naive Approach Using Mutual Information
Discovering Collocations	

Application: Discovering Collocations Codes	What are Collocations? The Naive Approach Using Mutual Information
Discovering Collocations	

Remember *collocations* from Informatics 1B?

- collocations are sequences of words that occur together;
- correspond to conventionalized, habitual ways of saying things;
- are often highly frequent in the language;
- collocations contrast with other expressions that are near-synonyms, but not conventionalized (*strong tea* vs. *powerful tea*; *strong car* vs. *powerful car*);

Task: automatically identify collocations in a large corpus.

- (1) He spoke English with $a/n \dots$ French accent.
 - a. average
 - b. careless
 - c. widespread
 - d. pronounced
 - e. chronic

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Application: Discovering Collocations Codes What are Collocations? The Naive Approach Using Mutual Information	Application: Discovering Collocations Codes What are Collocations? The Naive Approach Using Mutual Information
Discovering Collocations	Discovering Collocations
(2) He gave us a account of all that you had achieved over	(3) Could you please give me $a/n \dots account?$
there.	a. <i>itemized</i>
a. ready	b. dreadful
b. yenow	c. great
d luxury	d. luxury
	e. glowing

glowing e.

e Collocations? ve Approach utual Information	Application: Discovering Collocations Codes What are Collocat The Naive Approx Using Mutual Info	tions? ach ormation
	Discovering Collocations	
	Collocations? e Approach itual Information	Collocations? Application: Discovering Collocations Codes What are Colloca The Naive Appro- Using Mutual Information Discovering Collocations Discovering Collocations

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへの

Kim and Sandy made ... after the argument. (4)

Frank Keller

- with a.
- about b.
- off c.
- d. uр
- for e.

Can we discover collocations in corpora (large collections of text)?

Frank Keller Formal Modeling in Cognitive Science

8

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ���

eling in Cognitive Science

collocations (see previous slides).

frequency enough to learn them?

them automatically to create dictionaries;

Engineering applications:

• Where do these intuitions come from? Can collocational

• collocations are different for different text types: discover

• translation systems have to replace a collocation in the source language with a valid collocation in the target language.

knowledge be learned from exposure? Is simple co-occurrence

Application: Discovering Collocations

What are Collocations? The Naive Approach Using Mutual Information

The Naive Approach

What are Collocations? The Naive Approach Using Mutual Information

The Naive Approach

$c(w_1, w_2)$	w_1	W2
89871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
11428	New	York

・ロト・西・・田・・田・ 田・ シック

 Frank Keller
 Formal Modeling in Cognitive Science
 10

What are Collocations

Using Mutual Information

The simplest way of finding collocations is counting. If two words occur together a lot, they form a collocation:

- go to a corpus;
- look for two word combinations (bigrams);
- count their frequency;
- select most frequent combinations;
- assume these are collocations.

Frank Keller	Formal wodeling in Cognitive Science	

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Application: Discovering Collocations Codes	What are Collocations? The Naive Approach Using Mutual Information
Pointwise Mutual Information	n

- As the previous example shows, if two words co-occur a lot in a corpus, it does not mean that they are collocations;
- if we have a set of candidate collocations (e.g., all co-occurrences of *tea*), then we can use χ^2 to filter them (see Informatics 1B);
- however, this doesn't work so well for discovering collocations from scratch;
- instead: use *pointwise mutual information;*
- intuitively, MI tells us how informative the occurrence of one word is about the occurrence of another word;
- words that are highly informative about each other form a collocation.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 めんの

11

Application: Discovering Collocations Codes

Pointwise Mutual Information

$I(w_1; w_2)$	$c(w_1)$	$c(w_2)$	$c(w_1, w_2)$	w ₁	W2
18.38	42	20	20	Ayatollah	Ruhollah
17.98	41	27	20	Bette	Midler
16.31	30	117	20	Agatha	Christie
15.94	77	59	20	videocassette	recorder
15.19	24	320	20	unsalted	butter
1.09	14907	9017	20	first	made
1.01	13484	10570	20	over	many
0.53	14734	13487	20	into	them
0.46	14093	14776	20	like	people
0.29	15019	15629	20	time	last

Application: Discovering Collocations

The Naive Approach Using Mutual Information

Pointwise Mutual Information

Example

Take an example from the table:

$$I(x; y) = \log \frac{f(x, y)}{f(x)f(y)} = \log \frac{\frac{c(x, y)}{N}}{\frac{c(x)}{N}\frac{c(y)}{N}}$$

$$(\text{unsalted; butter}) = \log rac{rac{20}{14307668}}{rac{24}{14307668}rac{320}{14307668}} = 15.19$$

This means: the amount of information we have about *unsalted* at position *i* increases by 15.19 bits if we are told that *butter* is at position i + 1 (i.e., uncertainty is reduced by 15.19 bits).

rank Keller	Formal Modeling in Cognitive Science

Application: Discovering Collocations	Source Codes
Codes	Properties of Codes
Source Codes	

Example

Let X be a random variable with the following distribution and code word assignment:

X	а	b	С	d
f(x)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$
C(x)	0	10	110	111

The expected code length of X is:

$$L(C) = \sum_{x \in X} f(x)I(x) = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$

Source Codes Properties of Codes

Source Codes

Definition: Source Code

A source code C for a random variable X is a mapping from $x \in X$ to $\{0,1\}^*$. Let C(x) denote the code word for x and I(x) denote the length of C(x).

Here, $\{0,1\}^*$ is the set of all finite binary strings (we will only consider binary codes).

Definition: Expected Length

The expected length L(C) of a source code C(x) for a random variable with the probability distribution f(x) is:

$$L(C) = \sum_{x \in X} f(x) l(x)$$

イロトイクトイミトイミト そのへで Formal Modeling in Cognitive Science 14

Application: Discovering Collocations Codes

Frank Keller

Properties of Codes

Properties of Codes

Definition: Non-singular Code

A code is called non-singular if every $x \in X$ maps into a different string in $\{0,1\}^*$.

- If a code is non-singular, then we can transmit a value of X unambiguously.
- However, what happens if we want to transmit several values of X in a row?
- We could use a special symbol to separate the code words.
- However, this is not an efficient use of the special symbol; instead use *self-punctuating* codes (prefix codes).

オロトオポトオミトオミト ミーのくや

13

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application: Discovering Collocations Codes

Properties of Codes

Properties of Codes

Definition: Extension

The extension C^* of a code C is:

$$C^*(x_1x_2\ldots x_n)=C(x_1)C(x_2)\ldots C(x_n)$$

where $C(x_1)C(x_2)\ldots C(x_n)$ indicates the concatenation of the corresponding code words.

Definition: Uniquely Decodable

A code is called uniquely decodable if its extension is non-singular.

- If the code is uniquely decodable, then for each string there is only one source string that produced it;
- However, we have to look at the whole string to do the decoding.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで Formal Modeling in Cognitive Science

17

Application: Discovering Collocations Codes **Properties of Codes Properties of Codes**

Frank Keller

Example

The following table illustrates the different classes of codes:

		Non-singular, not	Uniq. decodable,	
x	Singular	uniq. decodable	not instant.	Instant.
а	0	0	10	0
b	0	010	00	10
с	0	01	11	110
d	0	10	110	111

Properties of Codes

Properties of Codes

Definition: Prefix Code

A code is called a prefix code (instantaneous code) if no code word is a prefix of another code word.

We don't have to wait for the whole string to be able to decode it; the end of a code word can be recognized instantaneously.

Example

The code in the previous example is a prefix code. Take the following sequence: 01011111010.

The first symbol, 0, tells us we have an *a*; the next two symbols 10, have to correspond to b; the next three symbols have to correspond to a d, etc. The decoded sequence is: abdcb.

> Frank Keller Formal Modeling in Cognitive Science 18

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Application: Discovering Collocations Codes

Properties of Codes

Summary

- Collocations are sequences of words that occur together;
- simple co-occurrence frequency in a corpus is not enough to discover collocations
- instead, use the pointwise mutual information of two words;
- a code is uniquely decodable if there is only one possible source sequence for every code sequence;
- a code is instantaneous if each code word has a unique prefix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●