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Entropy Rate

Entropy rate takes the length of the message into account:

Definition: Entropy Rate

The entropy rate of a sequence of random variables X1, X2, . . . , Xn is
defined as:

Hrate =
1

n
H(X1, X2, . . . , Xn)

= −
1

n

∑

x1∈X1

∑

x2∈X2

· · ·
∑

xn∈Xn

f (x1, x2, . . . , xn) log f (x1, x2, . . . , xn)

Note that we have to extend our notion of joint distribution f (x , y)
and joint entropy H(X , Y ) to arbitrarily many random variables.
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Entropy Rate

Entropy depends on the length of the message; longer
messages have higher entropy (all else being equal);

entropy rate takes this into account, it normalizes by n, the
length of the message;

intuitively, entropy rate is the entropy per character or per
word in a message.

Example: simplified Polynesian

In the previous example, we computed the joint entropy of a
consonant and a vowel. The per character entropy is:

Hrate =
1

n
H(X1, X2, . . . , Xn) =

1

2
H(C , V ) = 1.218 bits
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Shannon’s Experiments

Guessing game: an experimental subject is given a sample of
English text and is asked to guess the next letter (Shannon 1951).

Assumption: subject will guess the most probably letter first, then
the second most probable letter, etc.

This way we get a probability distribution over the number of
guesses required to get the correct letter:

No. of guesses 1 2 3 4 5 > 5
Probability 0.79 0.08 0.03 0.02 0.02 0.06

Frank Keller Formal Modeling in Cognitive Science 5

Entropy Rate
Mutual Information

Entropy Rate
The Entropy of English

Shannon’s Experiments

Then we can then use this distribution to compute the entropy
rate of English. The results show:

Hrate(English) is between 0.6 and 1.3 bits per character if
estimated by humans;

if humans gamble on the outcome, Hrate(English) is between
1.25 and 1.35 bpc;

if we estimated it from a 500M word corpus, then
Hrate(English) 1.75 bpc.

Modern estimates use word-guessing, not letter-guessing.
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Mutual Information

Definition: Mutual Information

If X and Y are discrete random variables and f (x , y) is the value
of their joint probability distribution at (x , y), and f (x) and f (y)
are the marginal distributions of X and Y , respectively, then:

I (X ; Y ) =
∑

x∈X

∑

y∈Y

f (x , y) log
f (x , y)

f (x)f (y)

is the mutual information (MI) of X and Y .

Intuitively, mutual information is the reduction in uncertainty of X

due to the knowledge of Y .

Frank Keller Formal Modeling in Cognitive Science 7

Entropy Rate
Mutual Information

Mutual Information over Distributions
Pointwise Mutual Information
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We can also express mutual information in terms of entropy:

Theorem: Mutual Information

If X and Y are discrete random variables with joint entropy
H(X , Y ) and the marginal entropy of X is H(X ), then:

I (X ; Y ) = H(X ) − H(X |Y )

= H(Y ) − H(Y |X )

= H(X ) + H(Y ) − H(X , Y )

This follows from the definition of conditional entropy in terms of
joint entropy.
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Mutual Information

The relationship between mutual information and entropy can be
visualized using a Venn diagram:

H(X) H(Y)

H(X,Y)

H(Y|X)H(X|Y)
I(X;Y)
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Properties of mutual information:

Intuitively, I (X ; Y ) is the amount of information X and Y

contain about each other;

I (X ; Y ) ≥ 0 and I (X ; Y ) = I (Y ; X );

I (X ; Y ) is a measure of the dependence between X and Y :

I (X ;Y ) = 0 if and only if X and Y are independent;
I (X ;Y ) grows not only with the dependence of X and Y , but
also with H(X ) and H(Y );

I (X ; X ) = H(X ); entropy as “self-information” of X .
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Example: simplified Polynesian

Back to simplified Polynesian, with the following joint probability
distribution:

f (x , y) p t k f (y)

a 1
16

3
8

1
16

1
2

i 1
16

3
16

0 1
4

u 0 3
16

1
16

1
4

f (x) 1
8

3
4

1
8

Let’s compute the mutual information of a consonant and a vowel:

I (V ; C ) = H(V ) − H(V |C )
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Example: simplified Polynesian

First compute the entropy of a vowel:

H(V ) = −
∑

y∈V

f (y) log f (y)

= −(
1

2
log

1

2
+

1

4
log

1

4
+

1

4
log

1

4
)

= 1.5 bits

We have already computed H(V |C ) = 1.375 bits (last lecture), so
we can now compute:

I (V ; C ) = H(V ) − H(V |C ) = 0.125 bits
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Pointwise Mutual Information

Mutual information is defined over random variables.

Pointwise mutual information is defined over values of random

variables;

Example: MI over vowels and consonants; pointwise MI over
the letters a and p;

Intuitively, pointwise MI is the amount of information provided
by the occurrence of event y about the occurrence of event x .
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Definition: Pointwise Mutual Information

If X and Y are discrete random variables with the joint distribution
f (x , y) and the marginal distributions f (x) and f (y), then:

I (x ; y) = log
f (x , y)

f (x)f (y)

is the pointwise mutual information at (x , y).
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Example: simplified Polynesian

Compute the pointwise mutual information of a and p and of
i and p:

I (a; p) = log
f (a, p)

f (a)f (p)
= log

1
16

1
8
· 1

2

= 0

I (i ; p) = log
f (i , p)

f (i)f (p)
= log

1
16

1
8
· 1

4

= 1
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Summary

Entropy rate is the per-word or per-character entropy;

the entropy rate of English can be estimated using
experiments with humans or approximated using a large
corpus;

mutual information I (X ; Y ) is the reduction in uncertainty of
X due to the knowledge of Y ;

graphically, it’s the intersection of two entropies;

if X and Y are independent, then I (X ; Y ) = 0;

pointwise mutual information: same for points of a
distributions, instead of for the whole distribution.
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