Formal Modeling in Cognitive Science

Lecture 25: Entropy, Joint Entropy, Conditional Entropy

Frank Keller

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

March 6, 2006

Frank Keller

Formal Modeling in Cognitive Science

Entropy

Entropy and Information Joint Entropy
Conditional Entropy

Entropy and Information

Definition: Entropy

If X is a discrete random variable and f(x) is the value of its probability distribution at x, then the entropy of X is:

$$H(X) = -\sum_{x \in X} f(x) \log_2 f(x)$$

- Entropy is measured in bits (the log is log₂);
- intuitively, it measures amount of information (or uncertainty) in random variable:
- it can also be interpreted as the length of message to transmit an outcome of the random variable:
- note that $H(X) \ge 0$ by definition.

Entropy

- Entropy and Information
- Joint Entropy
- Conditional Entropy

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < で

Frank Keller

Formal Modeling in Cognitive Science

Entropy

Entropy and Information Joint Entropy
Conditional Entropy

Entropy and Information

Example: 8-sided die

Suppose you are reporting the result of rolling a fair eight-sided die. What is the entropy?

The probability distribution is $f(x) = \frac{1}{8}$ for x =1...8. Therefore entropy is:

$$H(X) = -\sum_{x=1}^{8} f(x) \log f(x) = -\sum_{x=1}^{8} \frac{1}{8} \log \frac{1}{8}$$
$$= -\log \frac{1}{8} = \log 8 = 3 \text{ bits}$$

This means the average length of a message required to transmit the outcome of the roll of the die is 3 bits.

Frank Keller

Example: 8-sided die

Suppose you wish to send the result of rolling the die. What is the most efficient way to encode the message?

The entropy of the random variable is 3 bits. That means the outcome of the random variable can be encoded as 3 digit binary message:

1	2	3	4	5	6	7	8
001	010	011	100	101	110	111	000

Frank Keller

Formal Modeling in Cognitive Science

Entropy

Entropy and Information Joint Entropy
Conditional Entropy

Example: simplified Polynesian

Example: simplified Polynesian

Now let's design a code that takes $2\frac{1}{2}$ bits to transmit a letter:

р	t	k	а	i	u
100	00	101	01	110	111

Any code is suitable, as long as it uses two digits to encode the high probability letters, and three digits to encode the low probability letters.

Example: simplified Polynesian

Example: simplified Polynesian

Polynesian languages are famous for their small alphabets. Assume a language with the following letters and associated probabilities:

What is the per-character entropy for this language?

$$H(X) = -\sum_{x \in \{p,t,k,a,i,u\}} f(x) \log f(x)$$
$$= -(4 \log \frac{1}{8} + 2 \log \frac{1}{4}) = 2\frac{1}{2} \text{ bits}$$

Frank Keller

Formal Modeling in Cognitive Science

Entropy

Entropy and Information Joint Entropy
Conditional Entropy

Properties of Entropy

Theorem: Entropy

If X is a binary random variable with the distribution f(0) = p and f(1) = 1 - p, then:

- H(X) = 0 if p = 0 or p = 1
- max H(X) for $p=\frac{1}{2}$

Intuitively, an entropy of 0 means that the outcome of the random variable is determinate; it contains no information (or uncertainty).

If both outcomes are equally likely $(p = \frac{1}{2})$, then we have maximal uncertainty.

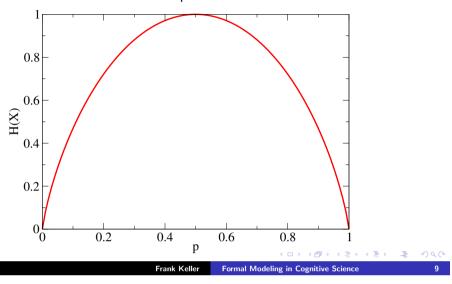
Frank Keller

Entropy

Entropy and Information

Properties of Entropy

Visualize the content of the previous theorem:



Entropy

Conditional Entropy

Definition: Conditional Entropy

If X and Y are discrete random variables and f(x, y) and f(y|x)are the values of their joint and conditional probability distributions. then:

$$H(Y|X) = -\sum_{x \in X} \sum_{y \in Y} f(x, y) \log f(y|x)$$

is the conditional entropy of Y given X.

The conditional entropy indicates how much extra information you still need to supply on average to communicate Y given that the other party knows X.

Entropy

Joint Entropy

Joint Entropy

Definition: Joint Entropy

If X and Y are discrete random variables and f(x, y) is the value of their joint probability distribution at (x, y), then the joint entropy of X and Y is:

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} f(x,y) \log f(x,y)$$

The joint entropy represents the amount of information needed on average to specify the value of two discrete random variables.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < で

Frank Keller

Formal Modeling in Cognitive Science

Entropy

Conditional Entropy

Example: simplified Polynesian

Now assume that you have the joint probability of a vowel and a consonant occurring together in the same syllable:

f(x,y)	р	t	k	f(y)
а	1 16	<u>3</u> 8	1 16	$\frac{1}{2}$
i	16 0	3 16 3	16 0	$\frac{1}{4}$
u	0	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
f(x)	$\frac{1}{8}$	3/1	1 0	

Compute the conditional probabilities; for example:

$$f(a|p) = \frac{f(a,p)}{f(p)} = \frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2}$$

$$f(a|t) = \frac{f(a,t)}{f(t)} = \frac{\frac{3}{8}}{\frac{3}{4}} = \frac{1}{2}$$

Formal Modeling in Cognitive Science

Conditional Entropy

Example: simplified Polynesian

Now compute the conditional entropy of a vowel given a consonant:

$$\begin{array}{ll} H(V|C) & = & -\sum\limits_{x \in C} \sum\limits_{y \in V} f(x,y) \log f(y|x) \\ & = & -(f(a,p) \log f(a|p) + f(a,t) \log f(a|t) + f(a,k) \log f(a|k) + \\ & f(i,p) \log f(i|p) + f(i,t) \log f(i|t) + f(i,k) \log f(i|k) + \\ & f(u,p) \log f(u|p) + f(u,t) \log f(u|t) + f(u,k) \log f(u|k)) \\ & = & -(\frac{1}{16} \log \frac{1}{16} + \frac{3}{8} \log \frac{3}{8} + \frac{1}{16} \log \frac{1}{16} + \\ & \frac{1}{16} \log \frac{1}{8} + \frac{3}{16} \log \frac{3}{16} + 0 + \\ & 0 + \frac{3}{16} \log \frac{3}{16} + \frac{1}{16} \log \frac{1}{16} \end{pmatrix} \\ & = & \frac{11}{8} = 1.375 \text{ bits} \end{array}$$

Frank Keller

Formal Modeling in Cognitive Science

13

Entropy

Entropy and Informatio Joint Entropy Conditional Entropy

Conditional Entropy

Example: simplified Polynesian

Use the previous theorem to compute the joint entropy of a consonant and a vowel. First compute H(C):

$$H(C) = -\sum_{x \in C} f(x) \log f(x)$$

$$= -(f(p) \log f(p) + f(t) \log f(t) + f(k) \log f(k))$$

$$= -(\frac{1}{8} \log \frac{1}{8} + \frac{3}{4} \log \frac{3}{4} + \frac{1}{8} \log \frac{1}{8})$$

$$= 1.061 \text{ bits}$$

Then we can compute the joint entropy as:

$$H(V, C) = H(V|C) + H(C) = 1.375 + 1.061 = 2.436$$
 bits

Conditional Entropy

For probability distributions we defined:

$$f(y|x) = \frac{f(x,y)}{g(x)}$$

A similar theorem holds for entropy:

Theorem: Conditional Entropy

If X and Y are discrete random variables with joint entropy H(X, Y) and the marginal entropy of X is H(X), then:

Entropy

$$H(Y|X) = H(X,Y) - H(X)$$

Division instead of subtraction as entropy is defined on logarithms.

- (□) (個) (注) (注) (注) (2) (2)

Frank Kelle

Formal Modeling in Cognitive Science

1/

Entropy

Entropy and Informati
Joint Entropy
Conditional Entropy

Summary

- Entropy measures the amount of information in a random variable or the length of the message required to transmit the outcome;
- joint entropy is the amount of information in two (or more) random variables;
- conditional entropy is the amount of information in one random variable given we already know the other.