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Entropy and Information

Definition: Entropy

If X is a discrete random variable and f (x) is the value of its
probability distribution at x , then the entropy of X is:

H(X ) = −
∑

x∈X

f (x) log2 f (x)

Entropy is measured in bits (the log is log2);

intuitively, it measures amount of information (or uncertainty)
in random variable;

it can also be interpreted as the length of message to transmit
an outcome of the random variable;

note that H(X ) ≥ 0 by definition.
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Entropy and Information

Example: 8-sided die

Suppose you are reporting the result of rolling a fair
eight-sided die. What is the entropy?

The probability distribution is f (x) = 1
8

for x =
1 . . . 8. Therefore entropy is:

H(X ) = −
8∑

x=1

f (x) log f (x) = −
8∑

x=1

1

8
log

1

8

= − log
1

8
= log 8 = 3 bits

This means the average length of a message required to transmit
the outcome of the roll of the die is 3 bits.
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Entropy and Information

Example: 8-sided die

Suppose you wish to send the result of rolling the die. What is the
most efficient way to encode the message?

The entropy of the random variable is 3 bits. That means the
outcome of the random variable can be encoded as 3 digit binary
message:

1 2 3 4 5 6 7 8
001 010 011 100 101 110 111 000
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Example: simplified Polynesian

Polynesian languages are famous for their small alphabets. Assume
a language with the following letters and associated probabilities:

x p t k a i u
f(x) 1

8
1
4

1
8

1
4

1
8

1
8

What is the per-character entropy for this language?

H(X ) = −
∑

x∈{p,t,k,a,i ,u}

f (x) log f (x)

= −(4 log
1

8
+ 2 log

1

4
) = 2

1

2
bits
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Example: simplified Polynesian

Example: simplified Polynesian

Now let’s design a code that takes 2 1
2

bits to transmit a letter:

p t k a i u
100 00 101 01 110 111

Any code is suitable, as long as it uses two digits to encode the
high probability letters, and three digits to encode the low
probability letters.
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Properties of Entropy

Theorem: Entropy

If X is a binary random variable with the distribution f (0) = p and
f (1) = 1 − p, then:

H(X ) = 0 if p = 0 or p = 1

max H(X ) for p = 1
2

Intuitively, an entropy of 0 means that the outcome of the random
variable is determinate; it contains no information (or uncertainty).

If both outcomes are equally likely (p = 1
2
), then we have maximal

uncertainty.
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Properties of Entropy

Visualize the content of the previous theorem:

0 0.2 0.4 0.6 0.8 1
p
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H
(X
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Joint Entropy

Definition: Joint Entropy

If X and Y are discrete random variables and f (x , y) is the value
of their joint probability distribution at (x , y), then the joint
entropy of X and Y is:

H(X , Y ) = −
∑

x∈X

∑

y∈Y

f (x , y) log f (x , y)

The joint entropy represents the amount of information needed on
average to specify the value of two discrete random variables.
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Conditional Entropy

Definition: Conditional Entropy

If X and Y are discrete random variables and f (x , y) and f (y |x)
are the values of their joint and conditional probability
distributions, then:

H(Y |X ) = −
∑

x∈X

∑

y∈Y

f (x , y) log f (y |x)

is the conditional entropy of Y given X .

The conditional entropy indicates how much extra information you
still need to supply on average to communicate Y given that the
other party knows X .
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Conditional Entropy

Example: simplified Polynesian

Now assume that you have the joint probability of a vowel and a
consonant occurring together in the same syllable:

f (x , y) p t k f (y)

a 1
16

3
8

1
16

1
2

i 1
16

3
16

0 1
4

u 0 3
16

1
16

1
4

f (x) 1
8

3
4

1
8

Compute the conditional probabilities; for example:

f (a|p) =
f (a, p)

f (p)
=

1
16
1
8

=
1

2

f (a|t) =
f (a, t)

f (t)
=

3
8
3
4

=
1

2
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Example: simplified Polynesian

Now compute the conditional entropy of a vowel given a consonant:

H(V |C ) = −
∑
x∈C

∑
y∈V

f (x , y) log f (y |x)

= −(f (a, p) log f (a|p) + f (a, t) log f (a|t) + f (a, k) log f (a|k)+
f (i , p) log f (i |p) + f (i , t) log f (i |t) + f (i , k) log f (i |k)+
f (u, p) log f (u|p) + f (u, t) log f (u|t) + f (u, k) log f (u|k))

= −( 1
16

log
1
16
1
8

+ 3
8
log

3
8
3
4

+ 1
16

log
1
16
1
8

+

1
16

log
1
16
1
8

+ 3
16

log
3
16
3
4

+ 0+

0 + 3
16

log
3
16
3
4

+ 1
16

log
1
16
1
8

)

= 11
8

= 1.375 bits

Frank Keller Formal Modeling in Cognitive Science 13

Entropy
Entropy and Information
Joint Entropy
Conditional Entropy

Conditional Entropy

For probability distributions we defined:

f (y |x) =
f (x , y)

g(x)

A similar theorem holds for entropy:

Theorem: Conditional Entropy

If X and Y are discrete random variables with joint entropy
H(X , Y ) and the marginal entropy of X is H(X ), then:

H(Y |X ) = H(X , Y ) − H(X )

Division instead of subtraction as entropy is defined on logarithms.
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Conditional Entropy

Example: simplified Polynesian

Use the previous theorem to compute the joint entropy of a
consonant and a vowel. First compute H(C ):

H(C ) = −
∑

x∈C

f (x) log f (x)

= −(f (p) log f (p) + f (t) log f (t) + f (k) log f (k))

= −(
1

8
log

1

8
+

3

4
log

3

4
+

1

8
log

1

8
)

= 1.061 bits

Then we can compute the joint entropy as:

H(V , C ) = H(V |C ) + H(C ) = 1.375 + 1.061 = 2.436 bits
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Summary

Entropy measures the amount of information in a random
variable or the length of the message required to transmit the
outcome;

joint entropy is the amount of information in two (or more)
random variables;

conditional entropy is the amount of information in one
random variable given we already know the other.
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