Formal Modeling in Cognitive Science Lecture 23: Special Distributions and Densities

Steve Renals (notes by Frank Keller)

School of Informatics University of Edinburgh s.renals@ed.ac.uk

5 March 2007

- Special Probability Distributions
 - Uniform Distribution
 - Binominal Distribution

- Special Probability Densities
 - Uniform Distribution
 - Exponential Distribution
 - Normal Distribution

Uniform Distribution

Definition: Uniform Distribution

A random variable X has a discrete uniform distribution iff its probability distribution is given by:

$$f(x) = \frac{1}{k}$$
 for $x = x_1, x_2, \dots, x_k$

where $x_i \neq x_i$ when $i \neq j$.

The mean and variance of the uniform distribution are:

$$\mu = \sum_{i=1}^{k} x_i \cdot \frac{1}{k}$$
 $\sigma^2 = \sum_{i=1}^{k} (x_i - \mu)^2 \frac{1}{k}$

Often we are interested in experiments with repeated trials:

- assume there is a fixed number of trials;
- each of the trial can have two outcomes (e.g., success and failure, head and tail);
- the probability of success and failure is the same for each trial: θ and $1-\theta$;
- the trials are all independent.

Then the probability of getting x successes in n trials in a given order is $\theta^x(1-\theta)^{n-x}$. And there are $\binom{n}{x}$ different orders, so the overall probability is $\binom{n}{x}\theta^x(1-\theta)^{n-x}$.

Definition: Binomial Distribution

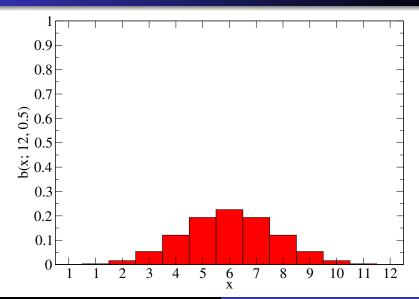
A random variable X has a binominal distribution iff its probability distribution is given by:

$$b(x; n, \theta) = \binom{n}{x} \theta^{x} (1 - \theta)^{n-x} \text{for } x = 0, 1, 2, \dots, n$$

Example

The probability of getting five heads and seven tail in 12 flips of a balanced coin is:

$$b(5; 12, \frac{1}{2}) = {12 \choose 5} (\frac{1}{2})^5 (1 - \frac{1}{2})^{12 - 5}$$



If we invert successes and failures (or heads and tails), then the probability stays the same. Therefore:

Theorem: Binomial Distribution

$$b(x; n, \theta) = b(n - x; n, 1 - \theta)$$

Two other important properties of the binomial distribution are:

Theorem: Binomial Distribution

The mean and the variance of the binomial distribution are:

$$\mu = n\theta$$
 and $\sigma^2 = n\theta(1-\theta)$

Uniform Distribution

Definition: Uniform Distribution

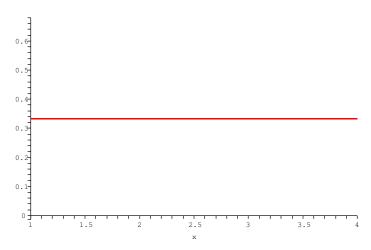
A random variable X has a continuous uniform distribution iff its probability density is given by:

$$u(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} & \text{for } \alpha < x < \beta \\ 0 & \text{elsewhere} \end{cases}$$

The mean and variance of the uniform distribution are:

$$\mu = \frac{\alpha + \beta}{2}$$
 $\sigma^2 = \frac{1}{12}(\alpha - \beta)^2$

Uniform Distribution



Uniform distribution for $\alpha = 1$ and $\beta = 4$.

Exponential Distribution

Definition: Exponential Distribution

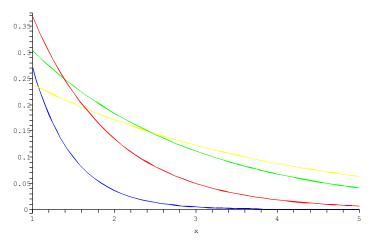
A random variable X has an exponential distribution iff its probability density is given by:

$$g(x; \theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & \text{for } x > 0 \\ 0 & \text{elsewhere} \end{cases}$$

The mean and variance of the exponential distribution are:

$$\mu = \theta$$
 $\sigma^2 = \theta^2$

Exponential Distribution



Exponential distribution for $\theta = \{0.5, 1, 2, 3\}$.

Normal Distribution

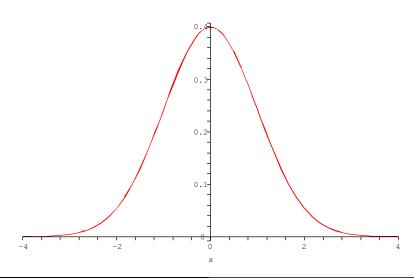
Definition: Normal Distribution

A random variable X has a normal distribution iff its probability density is given by:

$$n(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \text{ for } -\infty < x < \infty$$

- Normally distributed random variables are ubiquitous in probability theory;
- many measurements of physical, biological, or cognitive processes yield normally distributed data;
- such data can be modeled using a normal distributions (sometimes using mixtures of several normal distributions);
- also called the Gaussian distribution.

Standard Normal Distribution



Normal Distribution

Definition: Standard Normal Distribution

The normal distribution with $\mu=0$ and $\sigma=1$ is referred to as the standard normal distribution:

$$n(x;0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

Theorem: Standard Normal Distribution

If a random variable X has a normal distribution, then:

$$P(|x - \mu| < \sigma) = 0.6826$$

 $P(|x - \mu| < 2\sigma) = 0.9544$

This follows from Chebyshev's Theorem (see previous lecture).

Normal Distribution

Theorem: Z-Scores

If a random variable X has a normal distribution with the mean μ and the standard deviation σ then:

$$Z = \frac{X - \mu}{\sigma}$$

has the standard normal distribution.

This conversion is often used to make results obtained by different experiments comparable: convert the distributions to Z-scores.

Summary

- The uniform distribution assigns each value the same probability;
- The binomial distributions models an experiment with a fixed number of independent binary trials, each with the same probability;
- The normal distribution models the data generated by measurements of physical, biological, or cognitive processes;
- Z-scores can be used to convert a normal distribution into the standard normal distribution.