Formal Modeling in Cognitive Science

Lecture 23: Special Distributions and Densities

Steve Renals (notes by Frank Keller)

School of Informatics
University of Edinburgh
s.renals@ed.ac.uk

5 March 2007
(1) Special Probability Distributions

- Uniform Distribution
- Binominal Distribution
(2) Special Probability Densities
- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Uniform Distribution

Definition: Uniform Distribution

A random variable X has a discrete uniform distribution iff its probability distribution is given by:

$$
f(x)=\frac{1}{k} \text { for } x=x_{1}, x_{2}, \ldots, x_{k}
$$

where $x_{i} \neq x_{j}$ when $i \neq j$.
The mean and variance of the uniform distribution are:

$$
\mu=\sum_{i=1}^{k} x_{i} \cdot \frac{1}{k} \quad \sigma^{2}=\sum_{i=1}^{k}\left(x_{i}-\mu\right)^{2} \frac{1}{k}
$$

Often we are interested in experiments with repeated trials:

- assume there is a fixed number of trials;
- each of the trial can have two outcomes (e.g., success and failure, head and tail);
- the probability of success and failure is the same for each trial: θ and $1-\theta$;
- the trials are all independent.

Then the probability of getting x successes in n trials in a given order is $\theta^{x}(1-\theta)^{n-x}$. And there are $\binom{n}{x}$ different orders, so the overall probability is $\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$.

Binominal Distribution

Definition: Binomial Distribution

A random variable X has a binominal distribution iff its probability distribution is given by:

$$
b(x ; n, \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \text { for } x=0,1,2, \ldots, n
$$

Example

The probability of getting five heads and seven tail in 12 flips of a balanced coin is:

$$
b\left(5 ; 12, \frac{1}{2}\right)=\binom{12}{5}\left(\frac{1}{2}\right)^{5}\left(1-\frac{1}{2}\right)^{12-5}
$$

Special Probability Distributions Special Probability Densities

Uniform Distribution
Binominal Distribution

Binominal Distribution

If we invert successes and failures (or heads and tails), then the probability stays the same. Therefore:

Theorem: Binomial Distribution

$$
b(x ; n, \theta)=b(n-x ; n, 1-\theta)
$$

Two other important properties of the binomial distribution are:

Theorem: Binomial Distribution

The mean and the variance of the binomial distribution are:

$$
\mu=n \theta \quad \text { and } \quad \sigma^{2}=n \theta(1-\theta)
$$

Definition: Uniform Distribution

A random variable X has a continuous uniform distribution iff its probability density is given by:

$$
u(x ; \alpha, \beta)= \begin{cases}\frac{1}{\beta-\alpha} & \text { for } \alpha<x<\beta \\ 0 & \text { elsewhere }\end{cases}
$$

The mean and variance of the uniform distribution are:

$$
\mu=\frac{\alpha+\beta}{2} \quad \sigma^{2}=\frac{1}{12}(\alpha-\beta)^{2}
$$

Uniform distribution for $\alpha=1$ and $\beta=4$.

Steve Renals (notes by Frank Keller)
Formal Modeling in Cognitive Science
9

Exponential Distribution
Normal Distribution
Exponential Distribution

Exponential distribution for $\theta=\{0.5,1,2,3\}$.

Definition: Exponential Distribution

A random variable X has an exponential distribution iff its probability density is given by:

$$
g(x ; \theta)= \begin{cases}\frac{1}{\theta} e^{-x / \theta} & \text { for } x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

The mean and variance of the exponential distribution are:

$$
\mu=\theta \quad \sigma^{2}=\theta^{2}
$$

Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science

Special Probability Distributions Special Probability Densities	Uniform Distribution Exponential Distribution Normal Distribution
Normal Distribution	

Definition: Normal Distribution
A random variable X has a normal distribution iff its probability density is given by:

$$
n(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \text { for }-\infty<x<\infty
$$

- Normally distributed random variables are ubiquitous in probability theory;
- many measurements of physical, biological, or cognitive processes yield normally distributed data;
- such data can be modeled using a normal distributions (sometimes using mixtures of several normal distributions);
- also called the Gaussian distribution.

Steve Renals (notes by Frank Keller)
Formal Modeling in Cognitive Science

Normal Distribution

Definition: Standard Normal Distribution

The normal distribution with $\mu=0$ and $\sigma=1$ is referred to as the standard normal distribution:

$$
n(x ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

Theorem: Standard Normal Distribution

If a random variable X has a normal distribution, then:

$$
\begin{aligned}
P(|x-\mu|<\sigma) & =0.6826 \\
P(|x-\mu|<2 \sigma) & =0.9544
\end{aligned}
$$

This follows from Chebyshev's Theorem (see previous lecture).

	Steve Renals (notes by Frank Keller)	Formal Modeling in Cognitive Science

- The uniform distribution assigns each value the same probability;
- The binomial distributions models an experiment with a fixed number of independent binary trials, each with the same probability;
- The normal distribution models the data generated by measurements of physical, biological, or cognitive processes;
- Z-scores can be used to convert a normal distribution into the standard normal distribution.

