Formal Modeling in Cognitive Science
Lecture 22: Expectation and Variance; Chebyshev's Theorem

Steve Renals (notes by Frank Keller)

School of Informatics
University of Edinburgh
s.renals@ed.ac.uk

Chebyshev's Theorem
(1) Expectation and Related Concepts

- Expectation
- Mean
- Variance

2

Expectation

The notion of mathematical expectation derives from games of chance. It's the product of the amount a player can win and the probability of wining.

Example

In a raffle, there are 10,000 tickets. The probability of winning is therefore $\frac{1}{10,000}$ for each ticket. The prize is worth $\$ 4,800$. Hence the expectation per ticket is $\frac{\$ 4,800}{10,000}=\$ 0.48$.

In this example, the expectation can be thought of as the average win per ticket.

This intuition can be formalized as the expected value of a random variable:

Definition: Expected Value

If X is a discrete random variable and $f(x)$ is the value of its probability distribution at x, then the expected value of X is:

$$
E(X)=\sum_{x} x \cdot f(x)
$$

We will only deal with the discrete case here (but the definition can be extended to cover continuous random variables).

Example

A balanced coin is flipped three times. Let X be the number of heads. Then the probability distribution of X is:

$$
f(x)= \begin{cases}\frac{1}{8} & \text { for } x=0 \\ \frac{3}{8} & \text { for } x=1 \\ \frac{3}{8} & \text { for } x=2 \\ \frac{1}{8} & \text { for } x=3\end{cases}
$$

The expected value of X is:

$$
E(X)=\sum_{x} x \cdot f(x)=0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{3}{2}
$$

Steve Renals (notes by Frank Keller)
Formal Modeling in Cognitive Science
Expectation and Related Concepts Chebyshev's Theorem

Expectation

Varianc

Expectation

Example

Let X be the number of points rolled with a balanced die. Find the expected value of X and of $g(X)=2 X^{2}+1$
The probability distribution for X is $f(x)=\frac{1}{6}$. Therefore:

	Steve Renals (notes by Frank Keller)	Formal Modeling in Cogitive Science	6
	Expectation and Related Concepts Chebyshev's Theore	Expect Mean	
Mean			

The expectation of a random variable is also called the mean of the random variable. It's denoted by μ.

Definition: Mean

If X is a discrete random variable and $f(x)$ is the value of its probability distribution at x, then the mean of X is:

$$
\mu=E(X)=\sum_{x} x \cdot f(x)
$$

Intuitively, μ denotes the average value of X.

Histogram with mean for the distribution in the previous example (number of heads in three coin flips):

Steve Renals (notes by Frank Keller)
Formal Modeling in Cognitive Science

Expectation
Variance

Variance

Example

Let X be a discrete random variable with the distribution:

$$
f(x)= \begin{cases}\frac{1}{8} & \text { for } x=0 \\ \frac{3}{8} & \text { for } x=1 \\ \frac{3}{8} & \text { for } x=2 \\ \frac{1}{8} & \text { for } x=3\end{cases}
$$

Then the variance and standard deviation of X are:

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{x}(x-\mu)^{2} f(x) \\
& =\left(0-\frac{3}{2}\right)^{2} \cdot \frac{1}{8}+\left(1-\frac{3}{2}\right)^{2} \cdot \frac{3}{8}+\left(2-\frac{3}{2}\right)^{2} \cdot \frac{3}{8}+\left(3-\frac{3}{2}\right)^{2} \cdot \frac{1}{8} \\
& =0.86 \\
\sigma & =\sqrt{\operatorname{var}(X)}=0.93
\end{aligned}
$$

Definition: Variance

If X is a discrete random variable and $f(x)$ is the value of its probability distribution at x, and μ is its mean then:

$$
\sigma^{2}=\operatorname{var}(X)=E\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} f(x)
$$

is the variance of X
Intuitively, $\operatorname{var}(X)$ reflects the spread or dispersion of a distribution, i.e., how much it diverges from the mean.
σ is called the standard deviation of X.

Steve Renals (notes by Frank Keller)	Formal Mc
Expectation and Related Concepts	Expectatio
Chebyshev's Theorem	Mean
Variance	

Variance

Histogram with mean and standard deviation for the previous example:

σ^{2} as a measure of dispersion:

Expectation and Related Concepts
Chebysheve's Theorem
Chebyshev's Theorem

Chebyshev's Theorem

If μ and σ are the mean and the standard deviation of a random variable X, and $\sigma \neq 0$, then for any positive constant k :

$$
P(|x-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}}
$$

In other words, the probability that X will take on a value within k standard deviations of the mean is at least $1-\frac{1}{k^{2}}$.

Example

Assume $k=2$. Then $P(|x-\mu|<2 \sigma)=1-\frac{1}{2^{2}}=\frac{3}{4}$, i.e., at least 75% of the values of X fall within 2 standard deviations of the mean.

\(\left.\begin{array}{|l|l|}\hline Expectation and Related Concepts

Chebysheve's Theorem\end{array}\right)\)| Expectation |
| :--- |
| Maniance |

Steve Renals (notes by Frank Keller)
Formal Modeling in Cognitive Science

| Expectation and Related Concepts
 Chebyshev's Theorem |
| :--- | :--- |
| Chebyshev's Theorem |

Example: distribution with $\mu=4.99$ and $\sigma=3.13$.

Chebyshev's Theorem

Example

Using Chebyshev's Theorem, we can show: if X is normally distributed, then

$$
P(|x-\mu|<2 \sigma)=.9544
$$

In other words, the 95.44% of all values of X fall within 2 standard deviations of the mean. This is a tighter than the bound of 75% that holds for an arbitrary distribution.
Many cognitive variables (e.g., IQ measurements) are normally distributed. More on this in the next lecture.

Example: normal distribution with $\mu=0$ and $\sigma=1$.

The expected value of a random variable is its average value over a distribution;

- the mean is the same as the expected value;
- the variance of random variable indicates its dispersion, or spread around the mean;
- Chebyshev's theorem places a bound on the probability that the values of a distribution will be within a certain interval around the mean;
- for example, at least 75% of all values of a distribution fall within two standard deviations of the mean.

