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Expectation

The notion of mathematical expectation derives from games of
chance. It’s the product of the amount a player can win and the
probability of wining.

Example

In a raffle, there are 10,000 tickets. The probability of winning is
therefore 1

10,000 for each ticket. The prize is worth $4,800. Hence

the expectation per ticket is $4,800
10,000 = $0.48.

In this example, the expectation can be thought of as the average
win per ticket.
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Expectation

This intuition can be formalized as the expected value of a random
variable:

Definition: Expected Value

If X is a discrete random variable and f (x) is the value of its
probability distribution at x , then the expected value of X is:

E (X ) =
∑
x

x · f (x)

We will only deal with the discrete case here (but the definition
can be extended to cover continuous random variables).
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Example

A balanced coin is flipped three times. Let X be the number of
heads. Then the probability distribution of X is:

f (x) =


1
8 for x = 0
3
8 for x = 1
3
8 for x = 2
1
8 for x = 3

The expected value of X is:

E (X ) =
∑
x

x · f (x) = 0 · 1

8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

3

2
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Expectation

The notion of expectation can be generalized to cases in which a
function g(X ) is applied to a random variable X .

Theorem: Expected Value of a Function

If X is a discrete random variable and f (x) is the value of its
probability distribution at x , then the expected value of g(X ) is:

E [g(X )] =
∑
x

g(x)f (x)
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Example

Let X be the number of points rolled with a balanced die. Find the
expected value of X and of g(X ) = 2X 2 + 1.

The probability distribution for X is f (x) = 1
6 . Therefore:

E (X ) =
∑
x

x · f (x) =
6∑

x=1

x · 1

6
=

21

6

E [g(X )] =
∑
x

g(x)f (x) =
6∑

x=1

(2x2 + 1)
1

6
=

94

6
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Mean

The expectation of a random variable is also called the mean of
the random variable. It’s denoted by µ.

Definition: Mean

If X is a discrete random variable and f (x) is the value of its
probability distribution at x , then the mean of X is:

µ = E (X ) =
∑
x

x · f (x)

Intuitively, µ denotes the average value of X .
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Mean

Histogram with mean for the distribution in the previous example
(number of heads in three coin flips):
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Variance

Definition: Variance

If X is a discrete random variable and f (x) is the value of its
probability distribution at x , and µ is its mean then:

σ2 = var(X ) = E [(X − µ)2] =
∑
x

(x − µ)2f (x)

is the variance of X .

Intuitively, var(X ) reflects the spread or dispersion of a
distribution, i.e., how much it diverges from the mean.

σ is called the standard deviation of X .
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Example

Let X be a discrete random variable with the distribution:

f (x) =


1
8 for x = 0
3
8 for x = 1
3
8 for x = 2
1
8 for x = 3

Then the variance and standard deviation of X are:

var(X ) =
∑

x

(x − µ)2f (x)

= (0 − 3

2
)2 · 1

8
+ (1 − 3

2
)2 · 3

8
+ (2 − 3

2
)2 · 3

8
+ (3 − 3

2
)2 · 1

8
= 0.86

σ =
√

var(X ) = 0.93
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Histogram with mean and standard deviation for the previous
example:
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Dispersion

σ2 as a measure of dispersion:

1 2 3 4 5 6 7 8 9
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)

µ = 5 and σ2 = 5.26

1 2 3 4 5 6 7 8 9
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)

µ = 5 and σ2 = 3.18

Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science 13

Expectation and Related Concepts
Chebyshev’s Theorem

Expectation
Mean
Variance

Dispersion

σ2 as a measure of dispersion:
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Chebyshev’s Theorem

If µ and σ are the mean and the standard deviation of a random
variable X , and σ 6= 0, then for any positive constant k:

P(|x − µ| < kσ) ≥ 1 − 1

k2

In other words, the probability that X will take on a value within k
standard deviations of the mean is at least 1 − 1

k2 .

Example

Assume k = 2. Then P(|x − µ| < 2σ) = 1 − 1
22 = 3

4 , i.e., at least
75% of the values of X fall within 2 standard deviations of the
mean.

Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science 15

Expectation and Related Concepts
Chebyshev’s Theorem

Chebyshev’s Theorem

Example: distribution with µ = 4.99 and σ = 3.13.
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Example

Using Chebyshev’s Theorem, we can show: if X is normally
distributed, then:

P(|x − µ| < 2σ) = .9544

In other words, the 95.44% of all values of X fall within 2 standard
deviations of the mean. This is a tighter than the bound of 75%
that holds for an arbitrary distribution.

Many cognitive variables (e.g., IQ measurements) are normally
distributed. More on this in the next lecture.
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Example: normal distribution with µ = 0 and σ = 1.
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Summary

The expected value of a random variable is its average value
over a distribution;

the mean is the same as the expected value;

the variance of random variable indicates its dispersion, or
spread around the mean;

Chebyshev’s theorem places a bound on the probability that
the values of a distribution will be within a certain interval
around the mean;

for example, at least 75% of all values of a distribution fall
within two standard deviations of the mean.
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