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Continuous Random Variables

Continuous Random Variables

@ Continuous Random Variables

@ Density Functions
@ Probability Density Functions
@ Cumulative Distributions
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Probability Density Functions
Density Functions Cumulative Distributions

We only dealt with discrete (integer-valued) random variables. In
many situations, continuous (real-valued) random variables occur.

Examples

The outcomes of real-life experiments are often continuous:

@ An experimental subject reacts to a picture by pressing a
button (e.g., to indicate if the picture is familiar): the reaction
time (in ms) is a continuous random variable.

@ An EEG machine measures the electrical brain activity when a
subjects reads a word: the current (in ©V) is a continuous
random variable.

Definition of probability distribution, cumulative distribution, joint
distribution, etc., can be extended to the continuous case.
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Probability Density Functions

Extend definitions from discrete to continuous random variables:

@ use intervals a < X < b instead of discrete values X = x;

@ use integration over intervals instead of summation over
discrete values.

Definition: Probability Density Function

A function with values f(x), defined over the set of all real
numbers, is called a probability density function (pdf) of the
continuous random variable X if and only if:

P(a< X < b) = /b F(x)dx

for any real constants a and b with a < b.
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Probability Density Functions

Probability Density Functions
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Probability Density Functions

Assume a continuous random variable X with the pdf:

e X forx>0
s = { 0 elsewhere

Compute the probability for the interval 0 < X < 1:

b 1
P(a< X <b) = / f(x)dx:/ e Xdx = —e g
a 0

= (e )= (=& = _i +1=0.63
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Probability Density Functions

Theorem: Intervals of pdfs

If X is a continuous random variable and a and b are real
constants with a < b, then:

Pla<X<b)=Pla<X<b)=Pla<X<b)=Pla< X<b)

Theorem: Valid pdfs

A function can serve as the pdf of a continuous random variable X
if its values, f(x), satisfy the conditions:

© f(x) > 0 for each value within its domain;
Q 7 f(x)dx =1.
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Plot the function on the previous slide:
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Probability Density Functions

Example

Assume a random variable X with the pdf f(x) as follows. Is this a
valid pdf?
R % forl < x <2

e — { 6 elsewhere

f(x) > 0 is true by definition. To show [ f(x)dx = 1, integrate:

o 2 2
1 1 1 1
/_Oo (x)dx /1X2+2x X+2x1
1 1 1 1
= (24— (—c4-1)=1
(=5+5-2)=(=7+51)
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Probability Density Functions

Plot the function on the previous slide:
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Cumulative Distributions

Assume a continuous random variable X with the pdf:

et fort>0
F(t) = { 0 elsewhere

Integrate for t > 0:

F(x)=P(X <x) =

/_oo f(t)dt:/0 e fdt = —e7|
(—e ) — (€)= —-e*+1

Therefore the cumulative distribution of X is:

_ ) e +1 forx>0
A= { 0 elsewhere
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Density Functions

Cumulative Distributions

In analogy with the discrete case, we can define:

Definition: Cumulative Distribution

If X is a continuous random variable and the value of its
probability density function at t is f(t), then the function given by:

X

f(t)dt for — oo < x < 00

F(X):P(ng):/

—00

is the cumulative distribution of X.

Intuitively, the cumulative distribution captures the area under the
curve defined by f(t) from —oo to x.
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Cumulative Distributions

Theorem: Value of Cumulative Distribution

If f(x) and F(x) are the values of the pdf and the distribution
function of X at x, then:

P(a< X < b)=F(b)— F(a)
for any real constants a and b with a < b and:

f(x) = dFd(XX)

where the derivative exists.
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Cumulative Distributions

Example
Use the theorem on the previous slide to compute the probability
P(0 < X < 1) for f(t):

PO<X<1)=F1)-F0)=(—eH—(—e?= —i+1 = 0.63

Also, verify the derivative of F(x):

dF(x) _d(-e™) _ __,

dx dx |
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Summary

@ Probability density functions are the probability distributions
for continuous random variables;

@ cumulative distributions can also be defined for continuous
random variables.

Steve Renals (notes by Frank Keller) Formal Modeling in Cogpnitive Science 15

Probability Density Functions
Density Functions Cumulative Distributions

Other Densities

In analogy with the discrete case, we can define for continuous
random variables:

@ joint probability density;

@ marginal probability density;

@ conditional probability density.

Essentially, we replace the ) signs with integrals in the definitions
for the discrete case. We will not deal with this in detail.
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