

Continuous Random Variables Density Functions Probability Density Functions Cumulative Distributions	Continuous Random Variables Density Functions Density Functions Density Functions
Trobability Density Functions	Plot the function on the previous slide:
Example Assume a continuous random variable X with the pdf: $f(x) = \begin{cases} e^{-x} & \text{for } x > 0\\ 0 & \text{elsewhere} \end{cases}$ Compute the probability for the interval $0 \le X \le 1$: $P(a \le X \le b) = \int_{a}^{b} f(x) dx = \int_{0}^{1} e^{-x} dx = -e^{-x} \Big _{0}^{1}$ $= (-e^{-1}) - (-e^{0}) = -\frac{1}{e} + 1 = 0.63$	1
Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science 5	Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science 6
Continuous Random Variables Density Functions Probability Density Functions Probability Density Functions	Continuous Random Variables Density Functions Probability Density Functions Probability Density Functions
Theorem: Intervals of pdfs If X is a continuous random variable and a and b are real constants with $a \le b$, then: $P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = P(a < X < b)$ Theorem: Valid pdfs	Example Assume a random variable X with the pdf $f(x)$ as follows. Is this a valid pdf? $f(x) = \begin{cases} \frac{1}{x^2} + \frac{1}{2} & \text{for } 1 < x \le 2\\ 0 & \text{elsewhere} \end{cases}$ $f(x) \ge 0 \text{ is true by definition. To show } \int_{-\infty}^{\infty} f(x) dx = 1, \text{ integrate:}$

A function can serve as the pdf of a continuous random variable X

if its values, f(x), satisfy the conditions:

• $f(x) \ge 0$ for each value within its domain;

 $\int_{-\infty}^{\infty} f(x) dx = 1.$

 $= (-\frac{1}{2} + \frac{1}{2} \cdot 2) - (-\frac{1}{1} + \frac{1}{2} \cdot 1) = 1$

 $\int_{-\infty}^{\infty} f(x) dx = \int_{1}^{2} \frac{1}{x^{2}} + \frac{1}{2} dx = -\frac{1}{x} + \frac{1}{2} x \Big|_{1}^{2}$

Continuous Random Variables Probability Density Functions Density Functions Cumulative Distributions	Continuous Random Variables Probability Density Functions Density Functions Cumulative Distributions
Probability Density Functions	Cumulative Distributions
Plot the function on the previous slide:	Lumulative Distributions In analogy with the discrete case, we can define: Definition: Cumulative Distribution If X is a continuous random variable and the value of its probability density function at t is $f(t)$, then the function given by: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ for $-\infty < x < \infty$ is the cumulative distribution of X. Intuitively, the cumulative distribution captures the area under the curve defined by $f(t)$ from $-\infty$ to x.
X Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science 9	Steve Renals (notes by Frank Keller) Earmal Modeling in Cognitive Science 10
Continuous Random Variables Density Functions Cumulative Distributions Cumulative Distributions	Continuous Random Variables Density Functions Cumulative Distributions
Example Assume a continuous random variable X with the pdf: $f(t) = \begin{cases} e^{-t} & \text{for } t > 0\\ 0 & \text{elsewhere} \end{cases}$ Integrate for $t > 0$: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt = \int_{0}^{x} e^{-t}dt = -e^{-t} _{0}^{x}$ $= (-e^{-x}) - (-e^{0}) = -e^{-x} + 1$	Theorem: Value of Cumulative Distribution If $f(x)$ and $F(x)$ are the values of the pdf and the distribution function of X at x, then: $P(a \le X \le b) = F(b) - F(a)$ for any real constants a and b with $a \le b$ and: $f(x) = \frac{dF(x)}{dx}$

Continuous Random Variables Density Functions Cumulative Distributions	Continuous Random Variables Density Functions Cumulative Distributions
Cumulative Distributions	Other Densities
ExampleUse the theorem on the previous slide to compute the probability $P(0 \le X \le 1)$ for $f(t)$: $P(0 \le X \le 1) = F(1) - F(0) = (-e^{-1}) - (-e^{-0}) = -\frac{1}{e} + 1 = 0.63$ Also, verify the derivative of $F(x)$: $\frac{dF(x)}{dx} = \frac{d(-e^{-x})}{dx} = e^{-x}$	 In analogy with the discrete case, we can define for continuous random variables: joint probability density; marginal probability density; conditional probability density. Essentially, we replace the ∑ signs with integrals in the definitions for the discrete case. We will not deal with this in detail.
Ordinauds (notes by Hundrichen) Probability Density Functions Cumulative Distributions Summary Ordinauds (notes by Enrichen) Probability density functions are the probability distributions for continuous random variables; ordinauds edistributions can also be defined for continuous random variables.	