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Joint Distributions

Previously, we introduced P(A ∩ B), the probability of the
intersection of the two events A and B.

Let these events be described by the random variables X at value x
and Y at value y . Then we can write:

P(A ∩ B) = P(X = x ∩ Y = y) = P(X = x ,Y = y)

This is referred to as the joint probability of X = x and Y = y .

Note: often the term joint probability and the notation P(A,B) is
also used for the probability of the intersection of two events.
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Joint Distributions

The notion of the joint probability can be generalized to
distributions:

Definition: Joint Probability Distribution

If X and Y are discrete random variables, the function given by
f (x , y) = P(X = x ,Y = y) for each pair of values (x , y) within the
range of X is called the joint probability distribution of X and Y .

Definition: Joint Cumulative Distribution

If X and Y are a discrete random variables, the function given by:

F (x , y) = P(X ≤ x ,Y ≤ y) =
∑
s≤x

∑
t≤y

f (s, t) for −∞ < x , y < ∞

where f (s, t) is the value of the joint probability distribution of X and Y
at (s, t), is the joint cumulative distribution of X and Y .
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Example: Corpus Data

Assume you have a corpus of a 100 words (a corpus is a collection
of text; see Informatics 1B). You tabulate the words, their
frequencies and probabilities in the corpus:

w c(w) P(w) x y
the 30 0.30 3 1
to 18 0.18 2 1
will 16 0.16 4 1
of 10 0.10 2 1
Earth 7 0.07 5 2
on 6 0.06 2 1
probe 4 0.04 5 2
some 3 0.03 4 2
Comet 3 0.03 5 2
BBC 3 0.03 3 0
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Example: Corpus Data

We can now define the following random variables:

X : the length of the word;

Y : number of vowels in the word.

Examples for probability distributions:

fX (5) = P(Earth) + P(probe) + P(Comet) = 0.14;

fY (2) = P(Earth) + P(probe) + P(some) + P(Comet) = 0.17.

Examples for cumulative distributions:

FX (3) = fX (2) + fX (3) = 0.34 + 0.33 = 0.67;

FY (1) = fX (0) + fX (1) = 0.03 + 0.80 = 0.83.
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Example: Corpus Data

Now compute the joint distribution of X and Y as
f (x , y) = P(X = x ,Y = y).

Examples:

f (2, 1) = P(to) + P(of) + P(on) = 0.18 + 0.10 + 0.06 = 0.34;

f (3, 0) = P(BBC) = 0.03;

f (4, 3) = 0.

Full distribution:

x
2 3 4 5

0 0 0.03 0 0
y 1 0.34 0.30 0.16 0

2 0 0 0.03 0.14
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Marginal Distributions

If we ‘project’ one of the two dimensions of a joint distributions,
we obtain a marginal distributions:

Definition: Marginal Distribution

If X and Y are discrete random variables and f (x , y) is the value of
their joint probability distribution at (x , y), the functions given by:

g(x) =
∑
y

f (x , y) and h(y) =
∑
x

f (x , y)

are the marginal distributions of X and Y , respectively.
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Example: Corpus Data

We had defined the following random variables:

X : the length of the word;

Y : number of vowels in the word.

Joint distribution of X and Y :

x
2 3 4 5

∑
x f (x , y)

0 0 0.03 0 0 0.03
y 1 0.34 0.30 0.16 0 0.80

2 0 0 0.03 0.14 0.17∑
y f (x , y) 0.34 0.33 0.19 0.14

Marginal distribution of Y . Marginal distribution of X .
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Conditional Distributions

Previously, we defined the conditional probability of two events A
and B as follows:

P(B|A) =
P(A ∩ B)

P(A)

Let these events be described by the random variable X = x and
Y = y . Then we can write:

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

f (x , y)

h(y)

where f (x , y) is the joint probability distribution of X and Y and
h(y) is the marginal marginal distribution of y .
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Conditional Distributions

Definition: Conditional Distribution

If f (x , y) is the value of the joint probability distribution of the
discrete random variables X and Y at (x , y) and h(y) is the value
of the marginal distributions of Y at y , and g(x) is the value of
the marginal distributions of X at x , then:

f (x |y) =
f (x , y)

h(y)
and w(y |x) =

f (x , y)

g(x)

are the conditional distributions of X given Y = y , and of Y given
X = x , respectively (for h(y) 6= 0 and g(x) 6= 0).
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Example: Corpus Data

Based on the joint distribution f (x , y) and the marginal
distributions h(y) and g(x) from the previous example, we can
compute the conditional distributions of X given Y = 1:

x
2 3 4 5
f (2,1)
h(1) = f (3,1)

h(1) = f (4,1)
h(1) = f (5,1)

h(1) =

y 1 0.34
0.80 = 0.30

0.80 = 0.16
0.80 = 0

0.80 =
0.43 0.38 0.20 0
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The notion of independence of events can also be generalized to
probability distributions:

Definition: Independence

If f (x , y) is the value of the joint probability distribution of the
discrete random variables X and Y at (x , y), and g(x) and h(y)
are the values of the marginal distributions of X at x and Y at y ,
respectively, then X and Y are independent iff:

f (x , y) = g(x)h(y)

for all (x , y) within their range.
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Example: Corpus Data

Marginal distributions from the previous example:

x
2 3 4 5 h(y)

0 0 0.03 0 0 0.03
y 1 0.34 0.30 0.16 0 0.80

2 0 0 0.03 0.14 0.17
g(x) 0.34 0.33 0.19 0.14

Now compute g(x)h(y) for each cell in the table:

x
2 3 4 5

0 0.01 0.01 0.01 0.00
y 1 0.27 0.26 0.15 0.12

2 0.06 0.06 0.03 0.02

X and Y are
not independent.
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Summary

A joint probability distribution returns a probability for each
pair of values of two random variables.

marginal distributions project one of the dimensions of a joint
probability distribution;

the conditional distribution is the joint distribution divided by
the marginal distribution;

two distributions are independent if the joint distribution is
the same as the product of the two marginal distributions.
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