Formal Modeling in Cognitive Science Lecture 20: Joint, Marginal, and Conditional Distributions

Steve Renals (notes by Frank Keller)

School of Informatics University of Edinburgh s.renals@ed.ac.uk

26 February 2007

1 Distributions

- Joint Distributions
- Marginal Distributions
- Conditional Distributions

Joint Distributions

Previously, we introduced $P(A \cap B)$, the *probability of the intersection* of the two events A and B.

Let these events be described by the random variables X at value x and Y at value y. Then we can write:

$$P(A \cap B) = P(X = x \cap Y = y) = P(X = x, Y = y)$$

This is referred to as the *joint probability* of X = x and Y = y.

Note: often the term joint probability and the notation P(A, B) is also used for the probability of the intersection of two events.

Joint Distributions

The notion of the joint probability can be generalized to distributions:

Definition: Joint Probability Distribution

If X and Y are discrete random variables, the function given by f(x, y) = P(X = x, Y = y) for each pair of values (x, y) within the range of X is called the joint probability distribution of X and Y.

Definition: Joint Cumulative Distribution

If X and Y are a discrete random variables, the function given by:

$$F(x,y) = P(X \le x, Y \le y) = \sum_{s \le x} \sum_{t \le y} f(s,t) \text{ for } -\infty < x, y < \infty$$

where f(s, t) is the value of the joint probability distribution of X and Y at (s, t), is the joint cumulative distribution of X and Y.

Example: Corpus Data

Assume you have a corpus of a 100 words (a corpus is a collection of text; see Informatics 1B). You tabulate the words, their frequencies and probabilities in the corpus:

W	c(w)	P(w)	x	y
the	30	0.30	3	1
to	18	0.18	2	1
will	16	0.16	4	1
of	10	0.10	2	1
Earth	7	0.07	5	2
on	6	0.06	2	1
probe	4	0.04	5	2
some	3	0.03	4	2
Comet	3	0.03	5	2
BBC	3	0.03	3	0

Example: Corpus Data

We can now define the following random variables:

- X: the length of the word;
- *Y*: number of vowels in the word.

Examples for probability distributions:

•
$$f_X(5) = P(Earth) + P(probe) + P(Comet) = 0.14;$$

•
$$f_Y(2) = P(\text{Earth}) + P(\text{probe}) + P(\text{some}) + P(\text{Comet}) = 0.17.$$

Examples for cumulative distributions:

•
$$F_X(3) = f_X(2) + f_X(3) = 0.34 + 0.33 = 0.67;$$

•
$$F_Y(1) = f_X(0) + f_X(1) = 0.03 + 0.80 = 0.83.$$

Example: Corpus Data

Now compute the joint distribution of X and Y as f(x, y) = P(X = x, Y = y).

Examples:

•
$$f(2,1) = P(to) + P(of) + P(on) = 0.18 + 0.10 + 0.06 = 0.34;$$

•
$$f(3,0) = P(BBC) = 0.03;$$

•
$$f(4,3) = 0.$$

Full distribution:

Marginal Distributions

If we 'project' one of the two dimensions of a joint distributions, we obtain a marginal distributions:

Definition: Marginal Distribution

If X and Y are discrete random variables and f(x, y) is the value of their joint probability distribution at (x, y), the functions given by:

$$g(x) = \sum_{y} f(x, y)$$
 and $h(y) = \sum_{x} f(x, y)$

are the marginal distributions of X and Y, respectively.

Example: Corpus Data

We had defined the following random variables:

- X: the length of the word;
- *Y*: number of vowels in the word.

Joint distribution of X and Y:

		X				
		2	3	4	5	$\sum_{x} f(x, y)$
	0	0	0.03	0	0	0.03
y	1	0.34	0.30	0.16	0	0.80
	2	0	0	0.03	0.14	0.17
\sum_{y}	f(x,y)	0.34	0.33	0.19	0.14	

Marginal distribution of Y. Marginal distribution of X.

Conditional Distributions

Previously, we defined the *conditional probability* of two events A and B as follows:

$$P(B|A) = rac{P(A \cap B)}{P(A)}$$

Let these events be described by the random variable X = x and Y = y. Then we can write:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f(x, y)}{h(y)}$$

where f(x, y) is the joint probability distribution of X and Y and h(y) is the marginal marginal distribution of y.

Conditional Distributions

Definition: Conditional Distribution

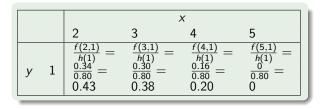
If f(x, y) is the value of the joint probability distribution of the discrete random variables X and Y at (x, y) and h(y) is the value of the marginal distributions of Y at y, and g(x) is the value of the marginal distributions of X at x, then:

$$f(x|y) = \frac{f(x,y)}{h(y)}$$
 and $w(y|x) = \frac{f(x,y)}{g(x)}$

are the conditional distributions of X given Y = y, and of Y given X = x, respectively (for $h(y) \neq 0$ and $g(x) \neq 0$).

Example: Corpus Data

Based on the joint distribution f(x, y) and the marginal distributions h(y) and g(x) from the previous example, we can compute the conditional distributions of X given Y = 1:



Independence

The notion of *independence* of events can also be generalized to probability distributions:

Definition: Independence

If f(x, y) is the value of the joint probability distribution of the discrete random variables X and Y at (x, y), and g(x) and h(y) are the values of the marginal distributions of X at x and Y at y, respectively, then X and Y are independent iff:

$$f(x,y) = g(x)h(y)$$

for all (x, y) within their range.

Example: Corpus Data

Marginal distributions from the previous example:

		2	3	4	5	h(y)
	0	0	0.03	0	0	0.03
y	1	0.34	0.30	0.16	0	0.80
	2	0	0	0.03	0.14	0.17
g(x)	0.34	0.33	0.19	0.14	

Now compute g(x)h(y) for each cell in the table:

			,	ĸ		
		2	3	4	5	X and Y are
	0	0.01	0.01	0.01	0.00	
y	1	0.27	0.26	0.15	0.12	not independe
-	2	0.06	0.06	0.03	0.02	

Steve Renals (notes by Frank Keller)

Formal Modeling in Cognitive Science

- A joint probability distribution returns a probability for each pair of values of two random variables.
- marginal distributions project one of the dimensions of a joint probability distribution;
- the conditional distribution is the joint distribution divided by the marginal distribution;
- two distributions are independent if the joint distribution is the same as the product of the two marginal distributions.