

| Distributions<br>Independence Joint Distributions<br>Conditional Distributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Distributions<br>Independence Conditional Distributions                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example: Corpus Data<br>Assume you have a corpus of a 100 words (a corpus is a collection<br>of text; see Informatics 1B). You tabulate the words, their<br>frequencies and probabilities in the corpus:<br>$\frac{w  c(w)  P(w)  x  y}{\text{the}  30  0.30  3  1} \\ \text{to}  18  0.18  2  1 \\ \text{will}  16  0.16  4  1 \\ \text{of}  10  0.10  2  1 \\ \text{Earth}  7  0.07  5  2 \\ \text{on}  6  0.06  2  1 \\ \text{probe}  4  0.04  5  2 \\ \text{some}  3  0.03  4  2 \\ \text{Comet}  3  0.03  5  2 \\ \text{BBC}  3  0.03  3  0 \\ \end{array}$ | Example: Corpus DataWe can now define the following random variables:• X: the length of the word;• Y: number of vowels in the word.Examples for probability distributions:• $f_X(5) = P(\text{Earth}) + P(\text{probe}) + P(\text{Comet}) = 0.14;$ • $f_Y(2) = P(\text{Earth}) + P(\text{probe}) + P(\text{some}) + P(\text{Comet}) = 0.17.$ Examples for cumulative distributions:• $F_X(3) = f_X(2) + f_X(3) = 0.34 + 0.33 = 0.67;$ • $F_Y(1) = f_X(0) + f_X(1) = 0.03 + 0.80 = 0.83.$ |
| Steve Renals (notes by Frank Keller)       Formal Modeling in Cognitive Science       5         Distributions       Joint Distributions       Marginal Distributions                                                                                                                                                                                                                                                                                                                                                                                             | Steve Renals (notes by Frank Keller)       Formal Modeling in Cognitive Science       6         Distributions       Joint Distributions       Marginal Distributions                                                                                                                                                                                                                                                                                                                     |
| Example: Corpus Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marginal Distributions Marginal Distributions                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Now compute the joint distribution of X and Y as<br>f(x, y) = P(X = x, Y = y).<br>Examples:<br>• $f(2, 1) = P(to) + P(of) + P(on) = 0.18 + 0.10 + 0.06 = 0.34;$<br>• $f(3, 0) = P(BBC) = 0.03;$<br>• $f(4, 3) = 0.$<br>Full distribution:<br>$\boxed{\begin{array}{c} x \\ 2 & 3 & 4 & 5 \\ \hline 0 & 0 & 0.03 & 0 & 0 \\ y & 1 & 0.34 & 0.30 & 0.16 & 0 \end{array}}$                                                                                                                                                                                          | If we 'project' one of the two dimensions of a joint distributions,<br>we obtain a marginal distributions:<br><b>Definition: Marginal Distribution</b><br>If X and Y are discrete random variables and $f(x, y)$ is the value of<br>their joint probability distribution at $(x, y)$ , the functions given by:<br>$g(x) = \sum_{y} f(x, y)$ and $h(y) = \sum_{x} f(x, y)$<br>are the marginal distributions of X and Y, respectively.                                                    |

#### Joint Distributions Marginal Distributions Conditional Distributions

# Example: Corpus Data

We had defined the following random variables:

Distributions

Independence

- X: the length of the word;
- *Y*: number of vowels in the word.

Joint distribution of X and Y:

|            |        |      | ;    | x    |      |                    |
|------------|--------|------|------|------|------|--------------------|
|            |        | 2    | 3    | 4    | 5    | $\sum_{x} f(x, y)$ |
|            | 0      | 0    | 0.03 | 0    | 0    | 0.03               |
| y          | 1      | 0.34 | 0.30 | 0.16 | 0    | 0.80               |
|            | 2      | 0    | 0    | 0.03 | 0.14 | 0.17               |
| $\sum_{y}$ | f(x,y) | 0.34 | 0.33 | 0.19 | 0.14 |                    |

### Marginal distribution of Y. Marginal distribution of X.

## **Conditional Distributions**

Previously, we defined the *conditional probability* of two events *A* and *B* as follows:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Let these events be described by the random variable X = x and Y = y. Then we can write:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f(x, y)}{h(y)}$$

where f(x, y) is the joint probability distribution of X and Y and h(y) is the marginal marginal distribution of y.

| Steve Renals (notes by Frank Keller) | Formal Modeling in Cognitive Science 9                                     | Steve Renals (notes by Frank Keller) | Formal Modeling in Cognitive Science 10                                    |
|--------------------------------------|----------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|
| Distributions<br>Independence        | Joint Distributions<br>Marginal Distributions<br>Conditional Distributions | Distributions<br>Independence        | Joint Distributions<br>Marginal Distributions<br>Conditional Distributions |
| Conditional Distributions            |                                                                            | Example: Corpus Data                 |                                                                            |

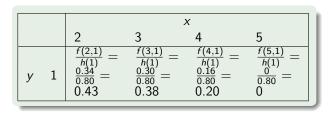
#### Definition: Conditional Distribution

If f(x, y) is the value of the joint probability distribution of the discrete random variables X and Y at (x, y) and h(y) is the value of the marginal distributions of Y at y, and g(x) is the value of the marginal distributions of X at x, then:

$$f(x|y) = \frac{f(x,y)}{h(y)}$$
 and  $w(y|x) = \frac{f(x,y)}{g(x)}$ 

are the conditional distributions of X given Y = y, and of Y given X = x, respectively (for  $h(y) \neq 0$  and  $g(x) \neq 0$ ).

Based on the joint distribution f(x, y) and the marginal distributions h(y) and g(x) from the previous example, we can compute the conditional distributions of X given Y = 1:



## Independence

The notion of *independence* of events can also be generalized to probability distributions:

Distributions

Independence

### Definition: Independence

If f(x, y) is the value of the joint probability distribution of the discrete random variables X and Y at (x, y), and g(x) and h(y) are the values of the marginal distributions of X at x and Y at y, respectively, then X and Y are independent iff:

$$f(x,y) = g(x)h(y)$$

Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science

Distributions Independence

for all (x, y) within their range.

## Example: Corpus Data

Marginal distributions from the previous example:

|    |    |      | ,    | κ    |      |      |
|----|----|------|------|------|------|------|
|    |    | 2    | 3    | 4    | 5    | h(y) |
|    | 0  | 0    | 0.03 | 0    | 0    | 0.03 |
| y  | 1  | 0.34 | 0.30 | 0.16 | 0    | 0.80 |
|    | 2  | 0    | 0    | 0.03 | 0.14 | 0.17 |
| g( | x) | 0.34 | 0.33 | 0.19 | 0.14 |      |

Now compute g(x)h(y) for each cell in the table:

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                    |   |   |      | ;    | ĸ    |      |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------|------|------|------|-------------|
| 0         0.01         0.01         0.01         0.00           y         1         0.27         0.26         0.15         0.12         not independent. |   |   | 2    | 3    | 4    | 5    | V and V are |
| y 1 0.27 0.26 0.15 0.12                                                                                                                                  |   | 0 | 0.01 | 0.01 | 0.01 | 0.00 |             |
| 2 0.06 0.06 0.03 0.02                                                                                                                                    | y | 1 | 0.27 | 0.26 | 0.15 | 0.12 |             |
|                                                                                                                                                          |   | 2 | 0.06 | 0.06 | 0.03 | 0.02 |             |

Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science

14

## Summary

- A joint probability distribution returns a probability for each pair of values of two random variables.
- marginal distributions project one of the dimensions of a joint probability distribution;
- the conditional distribution is the joint distribution divided by the marginal distribution;
- two distributions are independent if the joint distribution is the same as the product of the two marginal distributions.

13