Application of Bayes' Theorem Discrete Random Variables Distributions	Application of Bayes' Theorem Discrete Random Variables Distributions
Formal Modeling in Cognitive Science Lecture 19: Application of Bayes' Theorem; Discrete Random Variables; Distributions	 Application of Bayes' Theorem Background Application to Diagnosis Base Rate Neglect
Steve Renals (notes by Frank Keller)	2 Discrete Random Variables
School of Informatics University of Edinburgh s.renals@ed.ac.uk 22 February 2007	 Distributions Probability Distributions Cumulative Distributions
Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science 1 Application of Bayes' Theorem Discrete Random Variables Distributions Background Application to Diagnosis Base Rate Neglect 1	Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science Application of Bayes' Theorem Background Discrete Random Variables Application to Diagnosis Distributions Base Rate Neglect
Background	Background
	Most frequent answer: 95%
Let's look at an application of Bayes' theorem to the analysis of cognitive processes. First we need to introduce some data. Research on human decision making investigates, e.g., how physicians make a <i>medical diagnosis</i> (Casscells et al. 1978):	Reasoning: if false-positive rate is 5%, then test will be correct 95% of the time.
cognitive processes. First we need to introduce some data. Research on human decision making investigates, e.g., how	

Application of Bayes' Theorem Discrete Random Variables Application to Diagnosis Distributions

Bayes' Theorem

We need to think about Bayes' theorem slightly differently to apply it to this problem (and the terms have special names now):

Background

Bayes' Theorem (for hypothesis testing)

Given a hypothesis *h* and data *D* which bears on the hypothesis:

 $P(h|D) = \frac{P(D|h)P(h)}{P(D)}$

P(h): independent probability of h: prior probability

P(D): independent probability of D

P(D|h): conditional probability of D given h: likelihood

P(h|D): conditional probability of h given D: posterior probability

Application to Diagnosis

In Casscells et al.'s (1978) examples, we have the following:

- *h*: person tested has the disease;
- \bar{h} : person tested doesn't have the disease;
- *D*: person tests positive for the disease.

The following probabilities are known:

P(h) = 1/1000 = 0.001 $P(\bar{h}) = 1 - P(h) = 0.999$ $P(D|\bar{h}) = 5\% = 0.05$ P(D|h) = 1 (assume perfect test)

Compute the probability of the data (rule of total probability):

$$P(D) = P(D|h)P(h) + P(D|\bar{h})P(\bar{h}) = 1.0.001 + 0.05.0.999 = 0.05095$$

Compute the probability of correctly detecting the illness:

$$P(h|D) = \frac{P(h)P(D|h)}{P(D)} = \frac{0.001 \cdot 1}{0.05095} = 0.01963$$

Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science 5	Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science 6		
Application of Bayes' Theorem Background Discrete Random Variables Application to Diagnosis Distributions Base Rate Neglect	Application of Bayes' Theorem Background Discrete Random Variables Application to Diagnosis Distributions Base Rate Neglect		
Base Rate Neglect	Base Rates and Experience		
 Base rate: the probability of the hypothesis being true in the absence of any data (i.e., prior probability). Base rate neglect: people have a tendency to ignore base rate information (see Casscells et al.'s (1978) experimental results). base rate neglect has been demonstrated in a number of experimental situations; often presented as a fundamental bias in decision making; however, experiments show that subjects use base rates in certain situations; it has been argued that base rate neglect is only occurs in artificial or abstract mathematical situations. 	 Potential problems with in Casscells et al.'s (1978) study: subjects were simply told the statistical facts; they had no first-hand experience with the facts (through exposure to many applications of the test); providing subjects with experience has been shown to reduce or eliminate base rate neglect. Medin and Edelson (1988) tested the role of experience on decision making in medical diagnosis. 		

Application of Bayes' Theorem Discrete Random Variables Distributions

Base Rates and Experience

Medin and Edelson (1988) trained subjects on a diagnosis task in which diseases varied in frequency:

Application to Diagnosis Base Rate Neglect

- subjects were presented with pairs of symptoms and had to select one of six diseases;
- feedback was provided so that they learned symptom/disease associations;
- base rates of the diseases were manipulated;
- once subjects had achieved perfect diagnosis accuracy, they entered the transfer phase;
- subjects now made diagnoses for combinations of symptoms they had not seen before; made use of base rate information.

Discrete Random Variables

Discrete Random Variables

Definition: Random Variable

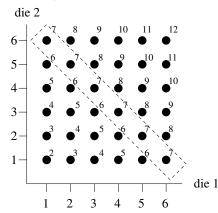
If S is a sample space with a probability measure and X is a real-valued function defined over the elements of S, then X is called a random variable.

We will denote random variable by capital letters (e.g., X), and their values by lower-case letters (e.g., x).

Example

Given an experiment in which we roll a pair of dice, let the random variable X be the total number of points rolled with the two dice.

For example X = 7 picks out the set $\{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}.$


Discrete Random Variables

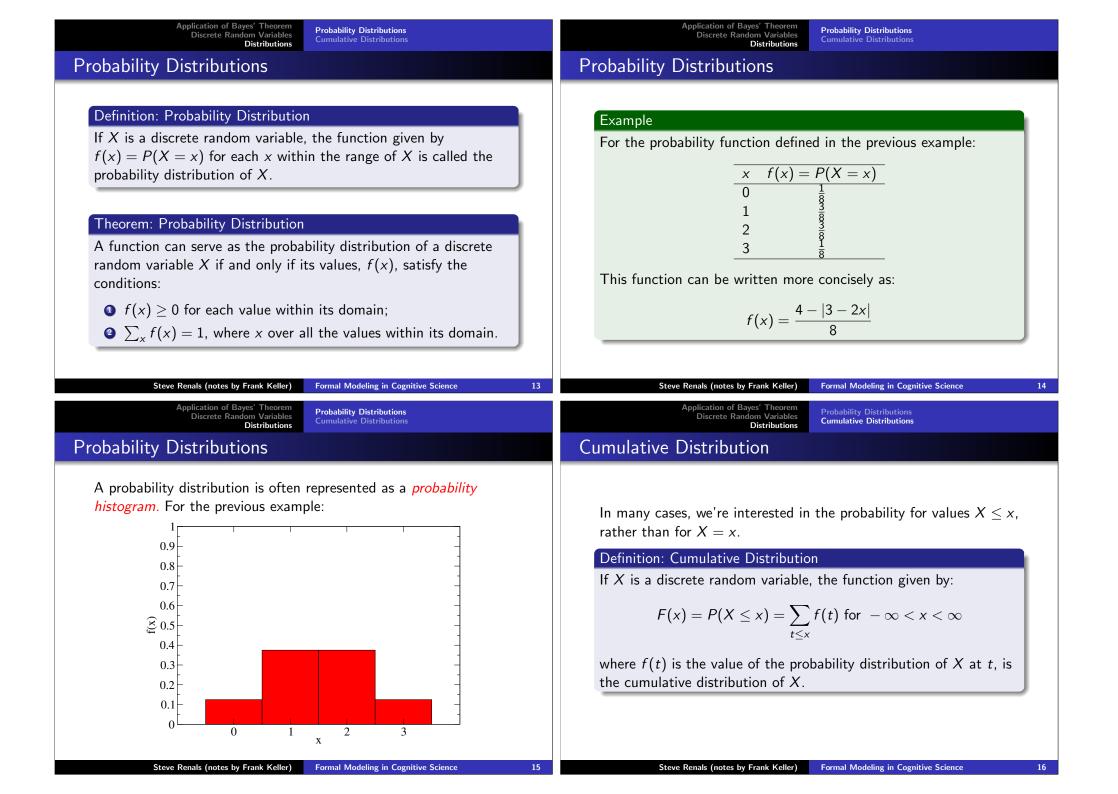
Steve Renals (notes by Frank Keller)	Formal Modeling in Cognitive Science 9	Steve Renals (notes by Frank Keller)	Formal Modeling in Cognitive Science	10
Application of Bayes' Theorem		Application of Bayes' Theorem		

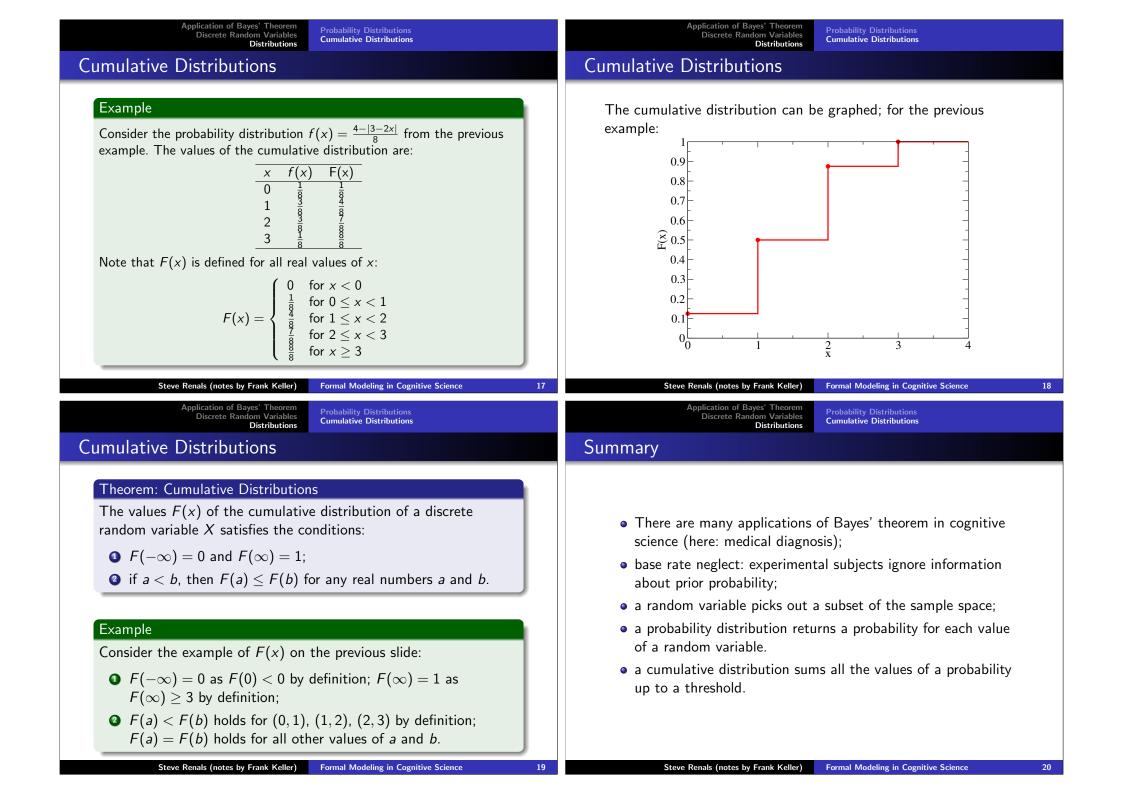
iscrete Random Variables

Discrete Random Variables

This can be illustrated graphically:

For each outcome, this graph lists the value of X, and the dotted area corresponds to X = 7.


Example


Assume a balanced coin is flipped three times. Let X be the random variable denoting the total number of heads obtained.

Distributions

Outcome	Probability	X	Outcom	e Probability	X
ННН	$\frac{1}{8}$	3	TTH	$\frac{1}{8}$	1
HHT	$\frac{1}{8}$	2	THT	$\frac{1}{8}$	1
HTH	$\frac{1}{8}$	2	HTT	$\frac{1}{8}$	1
THH	$\frac{1}{8}$	2	ТТТ	$\frac{1}{8}$	0

Hence,
$$P(X = 0) = \frac{1}{8}$$
, $P(X = 1) = P(X = 2) = \frac{3}{8}$
 $P(X = 3) = \frac{1}{8}$.

