Formal Modeling in Cognitive Science
Lecture 18: Conditional Probability; Bayes' Theorem

Steve Renals (notes by Frank Keller)

School of Informatics
University of Edinburgh
University of Edinburgh
s.renals@ed.ac.uk
20 February 2007

1 Conditional Probability and Independence

- Conditional Probability
- Independence

Bayes' Theorem

- Total Probability
- Bayes' Theorem

Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science Conditional Probability

$$
\begin{aligned}
& \text { dindependence } \\
& \text { Bayes' Theorem }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Indepentenal Pry } \\
& \text { Ind }
\end{aligned}
$$

Conditional Probability

Definition: Conditional Probability

If A and B are two events in a sample space S, and $P(A) \neq 0$ then the conditional probability of B given A is:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Intuitively, the conditional probability $P(B \mid A)$ is the probability that the event B will occur given that the event A has occurred

Examples

The probability of having a traffic accident given that it snows: P (accident|snow).
The probability of reading the word amok given that the previous word was run: P (amok|run)

Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science
Conditional Probability and Independence Conditional Probability
Conditional Probability

Example

A manufacturer knows that the probability of an order being ready on time is 0.80 , and the probability of an order being ready on time and being delivered on time is 0.72 . What is the probability of an order being delivered on time, given that it is ready on time?
R : order is ready on time; D : order is delivered on time $P(R)=0.80, P(R \cap D)=0.72$. Therefore:

$$
P(D \mid R)=\frac{P(R \cap D)}{P(R)}=\frac{0.72}{0.80}=0.90
$$

Example

Back to lateralization of language (see last lecture). Let $P(A)=0.15$ be the probability of being left-handed, $P(B)=0.05$ be the probability of language being right-lateralized, and $P(A \cap B)=0.04$
The probability of language being right-lateralized given that a person is left-handed:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.04}{0.15}=0.267
$$

The probability being left-handed given that language is right-lateralized:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.04}{0.05}=0.80
$$

Steve Renals (notes by Frank Keller) Formal Modeling in Cognitive Science Conditional Probability

Independence

Definition: Independent Events
Two events A and B are independent if and only if:

$$
P(B \cap A)=P(A) P(B)
$$

Intuitively, two events are independent if the occurrence of non-occurrence of either one does not affect the probability of the occurrence of the other.

Theorem: Complement of Independent Events

If A and B are independent, then A and \bar{B} are also independent.
This follows straightforwardly from set theory.
$\left.\begin{array}{|c|l|l|}\hline \text { Steve Renals (notes by Frank Keller) } & \text { Formal Modeling in Cognitive Science } & 6 \\ \hline \text { Conditional Probability and Independence } \\ \text { Bayes' Theorem }\end{array} \begin{array}{l}\text { Conditional Probability } \\ \text { Independence }\end{array}\right]$

Example

A coin is flipped three times. Each of the eight outcomes is equally likely A : head occurs on each of the first two flips, B : tail occurs on the third flip, C : exactly two tails occur in the three flips. Show that A and B are independent, B and C dependent.

$$
\begin{array}{ll}
A=\{H H H, H H T\} & P(A)=\frac{1}{4} \\
B=\{H H T, H T T, T H T, T T T\} & P(A)=\frac{1}{2} \\
C=\{H T T, T H T, T T H\} & P(C)=\frac{3}{8} \\
A \cap B=\{H H T\} & \left.P(A \cap B)=\frac{1}{8}\right\} \\
B \cap C=\{H T T, T H T\} & P(B \cap C)=\frac{1}{4}
\end{array}
$$

$P(A) P(B)=\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8}=P(A \cap B)$, hence A and B are independent. $P(B) P(C)=\frac{1}{2} \cdot \frac{3}{8}=\frac{3}{16} \neq P(B \cap C)$, hence B and C are dependent.

Theorem: Rule of Total Probability

If events $B_{1}, B_{2}, \ldots, B_{k}$ constitute a partition of the sample space S and $P\left(B_{i}\right) \neq 0$ for $i=1,2, \ldots, k$, then for any event A in S :

$$
P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

$B_{1}, B_{2}, \ldots, B_{k}$ form a partition of S if they are pairwise mutually exclusive and if $B_{1} \cup B_{2} \cup \ldots \cup B_{k}=S$

Steve Renals (notes by Frank Keller)
Formal Modeling in Cognitive Science

| Conditional Probability and Independence |
| :---: | :--- |
| Bayes' Theorem |\quad| Total Probability |
| :--- |
| Bayes' Theorem |

Bayes' Theorem

If $B_{1}, B_{2}, \ldots, B_{k}$ are a partition of S and $P\left(B_{i}\right) \neq 0$ for $i=1,2, \ldots, k$, then for any A in S such that $P(A) \neq 0$:

$$
P\left(B_{r} \mid A\right)=\frac{P\left(B_{r}\right) P\left(A \mid B_{r}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}
$$

This can be simplified by renaming $B_{r}=B$ and by substituting $P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)$ (theorem of total probability):

Bayes' Theorem (simplified)

$$
P(B \mid A)=\frac{P(B) P(A \mid B)}{P(A)}
$$

Example

In an experiment on human memory, participants have to memorize a set of words $\left(B_{1}\right)$, numbers $\left(B_{2}\right)$, and pictures $\left(B_{3}\right)$.
These occur in the experiment with the probabilities $P\left(B_{1}\right)=0.5$,
$P\left(B_{2}\right)=0.4, P\left(B_{3}\right)=0.1$.
Then participants have to recall the items (where A is the recall event). The results show that $P\left(A \mid B_{1}\right)=0.4, P\left(A \mid B_{2}\right)=0.2$, $P\left(A \mid B_{3}\right)=0.1$. Compute $P(A)$, the probability of recalling an item By the theorem of total probability:

$$
\begin{aligned}
P(A) & =\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right) \\
& =P\left(B_{1}\right) P\left(A \mid B_{1}\right)+P\left(B_{2}\right) P\left(A \mid B_{2}\right)+P\left(B_{3}\right) P\left(A \mid B_{3}\right) \\
& =0.5 \cdot 0.4+0.4 \cdot 0.2+0.1 \cdot 0.1=0.29
\end{aligned}
$$

$\left.\begin{array}{|c|l|l|}\hline \text { Steve Renals (notes by Frank Keller) } & \text { Formal Modeling in Cognitive Science } & 10 \\ \hline \text { Conditional Probability and Independence } \\ \text { Bayes' Theorem }\end{array} \quad \begin{array}{l}\text { Total Probability } \\ \text { Bayes' Theorem }\end{array}\right]$

Example

Reconsider the memory example. What is the probability that an item that is correctly recalled (A) is a picture $\left(B_{3}\right)$?

By Bayes' theorem:

$$
\begin{aligned}
P\left(B_{3} \mid A\right) & =\frac{P\left(B_{3}\right) P\left(A \mid B_{3}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)} \\
& =\frac{0.1 \cdot 0.1}{0.29}=0.0345
\end{aligned}
$$

The process of computing $P(B \mid A)$ from $P(A \mid B)$ is sometimes called Bayesian inversion.

- Conditional probability: $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$;
- independence: $P(B \cap A)=P(A) P(B)$.
- rule of total probability: $P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)$;
- Bayes' theorem: $P(B \mid A)=\frac{P(B) P(A \mid B)}{P(A)}$.

