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Preface

These lecture notes are for a course of fifteen lectures is designed for students in
the first year of their Cognitive Science degree. It is part of the full course ’Formal
modelling in Cognitive Science 1’. It covers the mathematical tools commonly used
to study neural models, cognitive science and related areas. Comments to these
lecture notes are always welcome at mvanross@inf.ed.ac.uk.

Literature There are many mathematics textbooks at intermediate level: e.g.
[Boas, 1966]. A good book that we use, is Greenberg’s [Greenberg, 1998]. It is a
bit expensive, but a good investment.

By now the internet is also a good resource (with the usual caveats) http:
//mathworld.wolfram.com contains an encyclopedia of mathematics.

A good introductory book in neural computation is Trappenberg’s [Trappenberg, 2002].
A more formal but very good book on neural networks: [Hertz et al., 1991]. See
lecture notes Neural Computation on http://homepages.inf.ed.ac.uk/mvanross
for more references and applications to neural systems and literature relevant to
neural modelling.

Software Numerical calculations can be done using Matlab (installed on DICE).
Octave is a decent, free clone of Matlab (older version on DICE). A recent alterna-
tive is ’R’, which has a neat structure, but is not compatible with Matlab.

Programs that deal with symbolic math are Maple (xmaple on DICE), maxima
(free), and Mathematica.
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1 Linear Algebra: Vectors

1.1 Vectors

In some cases a single number is enough to describe a system, in many other cases
a collection of numbers is necessary. When the individual variables all live in the
same space we call it a vector. Vector variables are commonly denoted bold-face
or, when hand-written, with a vector arrow. Example:

v = ~v = (v1, v2, v3, v4)

This is a four-dimensional vector. An example of a vector in the physical world is
the position in 3 dimensions; velocity is another example. Computer-scientists have
often a more loose definition of vector, namely as just a list of items or numbers,
not necessarily related to each other.

Addition and subtraction are done by component: suppose v = (v1, v2), w =
(w1, w2). Now v+w = (v1 +w1, v2 +w2) and v−w = (v1−w1, v2−w2), see Fig. 1.

The distinguish numbers from vectors we use the term scalar to indicate
just a single number. Scalar multiplication with a vector is defined as αv =
(αv1, αv2, αv3, αv4) and thus scales the vector. If we vary α over all real numbers
and we plot all points αv, we obtain a line through the origin.

We just described a vector using n (Cartesian) coordinates. Alternatively, one
can define a vector by its length and a direction (specified by n − 1 angles for a
n-dimensional vector).

Relevance to cognition

Many physical quantities are vectors. There are also applications to cog-
nitive science: the visual input at a particular instant can be described as
a vector. The number of dimension equals the number of pixels (ganglion
cells in the retina). For human retina there are about 1 million of these,
and the input dimension is therefor 1 million. One million numbers are nec-
essary to describe the image (we do not consider colour vision here, which
would triple this number). Note, that the geometry of the retina itself is
two-dimensional, but that is not important for the signal processing.

In sensory systems the input space is usually very high dimensional. This
allows for very rich set of input patterns, but for the scientist it complicates
study of sensory systems and their input-output transformation.

1.2 Distance

There are various ways to calculate the lengths of vectors (also called norm) and
distances between vectors. The most common one is the Euclidean norm. The Eu-

aa

a+b

b
−1/2 a

Figure 1: Left: Vector addition. Vector b is added to vector a. Geometrically the
sum can be obtained by aligning the tail of b to the head of a. Right: multiplication
of a vector with a scalar (-1/2).
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clidean length of a vector is given by |x| =
√

x2
1 + x2

2 + x2
3 + x2

4 + . . .. The distance
between two vector is the length of the difference vector. Using the Euclidean norm
the distance d is d(x,y) = |x− y| =

√
(x1 − y1)2 + (x2 − y2)2 + . . . . Distances

have the following properties:
1. |x− y| ≥ 0, and if |x− y| = 0 then x = y
2. |x + y| ≤ |x|+ |y| (triangle inequality)
3. |αx| = |α||x|
A more general norm is the p-norm (with p ≥ 1), it is defined as

|x|p = (|x1|p + |x2|p + |x3|p + . . .)1/p

The case p = 2 corresponds to the Euclidean norm, just described. When p = 1
one obtains the so-called Manhattan distance, |x|1 = |x1| + |x2| + |x3| + . . .. In a
2-dimensional plane it describes the distance between two points you would travel in
Manhattan around the blocks. For instance, the distance between p =(42ndstr, 5ndAv)
and q =(38thstr, 2ndAv) is |p1 − q1|+ |p2 − q2| = 7 blocks.

One can also take the limit p →∞ and one has

|x|∞ = max
i
|xi|

Sometimes this is called the chessboard distance. Check for yourself why the max
appears, by taking a numerical example for a large value of p.

Finally, to calculate the distance between two binary vectors one has defined the
Hamming distance. It is simply the sum of the mismatched bits. Note that when
the type of norm is not explicitly mentioned, the Euclidean one is implied.

Unit vectors There are certain instances where we are more interested in the
direction of the vector as than in its length. Normalised, or unit vectors have length
one. They are indicated with a caret. We can easily create a normalized version of
a vector by dividing it by its length.

x̂ = x/|x|
Of course, |x̂| = 1.

Relevance to cognition

Distance is an important concept in perception. Because vectors can rep-
resent more abstract constructs such as visual stimuli (above), we can also
talk about the distance between stimuli. Suppose we present two almost
identical stimuli, we can wonder when a subject will perceive them as dif-
ferent, and what distance measure perception uses. You can already look
at Fig. 2, to examine the different distances. There is no straightforward
answer to these questions.
Another important application of distance measures is that they can be use
to assess the quality of an artificial system. A distance can be used to mea-
sure the difference between the actual output of the system and the desired
response. Because of the first property of the distance, zero distance would
mean perfect performance. We will use this below.

1.3 Cluster plots

Suppose we have a bunch of data points in a high dimensional space, in other words
a set of vectors, and we are interested in their structure and relation. How can
we show the structure of the data and the relation between the data points? One
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solution would be to simply display the data point, for instance, by representing
each element of the vector as a grey scale. However this becomes tedious when
there are many data points.

A cluster-plot (dendrogram) can be used to express pair-wise structure in the
data, Fig 2. The algorithm to create a dendrogram is as follows: First, calculate
all Euclidean distances between all possible pairs. Next, find the pair with shortest
distance; connect the points with a fork with a length equal to the distance; replace
the pair with their average; repeat this procedure until all data are connected.

As the example shows, data on the same branch of the tree are most similar.

Digits Pattern: 0
Y

X

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0.00 5.00 10.00 15.00 20.00

0

4

1

7

6

2

5

3

8

9

Figure 2: Left: 10 binary digit patterns which we will use for object recognition.
Right: Cluster plot showing the distances between the digits.

1.4 Inner product

The inner product is also called dot product or scalar product. It takes two vectors
and produces a single number. It is defined as

a.b =
N∑

i=1

aibi

= a1b1 + a2b2 + . . .

The inner product can also be written as

a.b = |a||b| cos φ

here φ is the angle between the two vectors. Note that independent of the dimension
of the space, the angle between two vectors is always properly defined.
Example: if a = (2, 0), b = (1, 1), then a.b = 2, which equals 2

√
2 cos π

4
The inner product has the following properties:

• a.b = b.a

• |a.b| ≤ |a||b|. This is known as the Schwarz-inequality. Note, that this follows
from the fact that | cos φ| ≤ 1.

• When the vectors are perpendicular their inner product is zero. Another way
of saying this is that the vectors are orthogonal.
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• The inner-product is related to the length of the projection of one vector on
the other. When one vector, say a, is taken a unit vector, the inner product
gives the length of the projection of b onto a. If a is not a unit vector, the
inner-product is multiplied with a’s length.

• Two unit vectors whose inner product is one are necessarily parallel, and when
the inner product is minus one, they are opposite.

w

w
x

x

.

.
x

w thresholdw.x

0

0

1

1

n

n

Width

chairs

beds

tables

(after Humphrys)

Height

Figure 3: Left: a simple model of a neuron. The inputs x are weighted with w and
summed, the sum is thresholded. Right: Furniture can be classified according to
height and width.

Relevance to cognition

A neuron collects inputs from many different other neurons, typically some
1000 to 100000. Each connection, termed synapse in biology, has a certain
strength, indicated by weight wi. The set of all synapses is written as the
vector w. In the most basic models each wi can take any value, positive or
negative. When a weight is positive it is called excitatory, negative weights
are called inhibitory.
Suppose that the activities of the input neurons are written as x. A simple
model of a neuron, common in cognitive modelling, is to say that the
neuron’s activity, or firing rate, r is

r = f(w1x1 + w2x2 + w3x3 + . . .) = f(w.x)

Where f is some function that translates the net input, w.x, to output
activity. It is almost always a monotonically increasing function. There are
a few common choices for f : the hyperbolic tangent, the logistic function,
and the binary threshold

f(x) = tanh(βx) =
eβx − e−βx

eβx + e−βx
(the hyperbolic tangent)

f(x) =
1

1 + exp(−βx)
(the logistic function)

f(x) = 0 if x < 0
1 ifx ≥ 0 (threshold function)

The situation is sketched in Fig. 3 left, for a thresholding unit. The pa-
rameter β gives the steepness of the transition. An additional parameter,
the threshold, can also be included. For example, f(x) = tanh(β(x− T )),
where T denotes the threshold. Its role is to shift the activation curve.

From the above we know that the input is projected onto the weight vector.
This means that the most effective stimulus vector will be the one which
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aligns with the weight vector. The neuron acts as a template matcher,
where the template is given by the weight vector.

- Despite their simplicity these nodes are very powerful. McCullough and
Pitts have shown some 60 years ago that networks of these nodes can do
every kind on binary computation. So there is no limit to the complexity
even when we stick with these simple nodes.

- One of the main assumptions in neuroscience is that the weights store
memory, and their are many ideas how the weights can be changed in
order to change the memories stored or the computation that the network
performs (see below).

- It is important to realise that this model assumes linear summation of the
inputs, namely the net input is w.x. This is convenient but this has not
been proved convincingly in real neurons. In some cases it is known that
the inputs interact locally.

Defining planes with the inner-product The inner product also can be used
to define a plane. In n dimensions the equation x.a = c, where a is a given vector
and c is a given constant defines a (n − 1) dimensional plane for the vector x.
(planes in arbitrary dimension are also called hyper-planes). In two dimensions this
simplifies to a1x1 + a2x2 = c which defines a line.

Relevance to cognition

Categorisation is the problem of labelling inputs with the right category
label. In the case of visual recognition we might want to label a picture
as containing a car or not. We categorize all the time, both consciously
and unconsciously. In simple cases the categorisation can be done by de-
termining on which side of the hyper-plane the data falls. Suppose the
input is given by x, one can now calculate x.a with a some smartly chosen
vector and compare the outcome to a smartly chosen constant c. We can
construct a detector which when the outcome is smaller concludes that the
input was a chair, when larger, the input was a table or a bed, see Fig. 3.

1.5 Basis

A set of vectors forms a basis when each vector in the space can be uniquely de-
scribed by a linear combination of these basis vectors.

The most common basis is the orthonormal basis, which in three dimension are
the x, y and z direction. The basis vectors are commonly written as e1 = (1, 0, 0),
e2 = (0, 1, 0), and e3 = (0, 0, 1). The vector a = (2, 3, 0) can be decomposed as
a = 2e1 + 3e2 + 0e3.

A basis has as many basis-vectors as there are dimensions in the space. But
not every set of vectors forms a basis. When the vectors are linearly dependent
they do not form a basis. For example, (2, 0, 0), (4, 2, 0), and (0, 1, 0) do not form a
basis because they are linearly dependent (see exercises).

For an orthonormal basis one has for the inner products ei.ej = δij where
δij is the Kronecker-delta, δii = 1, and δij = 0 if i 6= j.

For an orthogonal basis the basis vectors are orthogonal (ei.ej = 0 if i 6= j),
but not normalized (ei.ei = ci).

1.5.1 Matlab notes

Matlab (or its free clone ’octave’) is ideal to work with vectors and matrices. You
can use the function ’dot’ to calculate dot products. The function ’norm’ calculates
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the norm of the vector. We first define two vectors
octave:1> a=[1 2 1]% size=1x3, row vector
a =1 2 1
octave:2> b=[1 1 0]’ % size=3x1, column vector
b =1
1
0
octave:3> dot(b,a) % calculate the dot product
ans = 3
octave:4> norm(a) % default euclidean norm
ans = 2.4495
octave:26> norm(a,1) % the Manhattan distance
ans = 4

Note, that we have defined two slightly different vectors, a row vector a and a
column vector b, and the actual screen output will reflect this. This distinction will
be important in the next section. Usually vectors are column vectors by default,
and aT can be used to indicate a row vector.

1.6 Exercises

1. Calculate (1, 2, 3) − (−1, 2x − 2, x). What does this set of vectors describe
when x is a variable.

2. We have discussed that the retinal input can be interpreted as a vector of high
dimensionality. What do scalar multiplication and addition correspond to in
the context of retinal inputs?

3. For the 3 different distance measures check that they obey the criteria, men-
tioned in 1.2.

4. Calculate the distance between (1, 0, 2) and (3, 1,−1) for the 3 different distant
measures.

5. If we change a single pixel in an image, will we perceive an image as different?
What if we change the brightness of the picture? What is the distance between
the original and modified image in each case. Discuss your results.

6. Calculate a(b.c) with a = (1, 0), b = (2, 1) and c = (2, 3).

7. Given the vector (3, 4), create a vector that has the same direction but with
length 2.

8. Show that |a− b|2 = |a|2 + |b|2 − 2a.b. Hint: write out the products.

9. How would the data from Fig. 3right, look in a cluster plot ?

10. Plot the activation function f(x) = tanh(β(x−T )) against x for a few choices
of β and threshold T .

11. Given the line a.x = c in two dimensions, how would you write a computer
program that draws it?

12. Given vectors (1, 2, 1), (3, 1, 0), (2,−1,−1). Check that some points, such as
(1, 0, 0) can not be described as a sum of these vectors, on the other hand
there are many possible decompositions of the vector (4, 3, 1). Do the three
vectors form a basis?
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2 Matrices

Matrices are convenient representations of linear operations on vectors. They consist
of rows and columns. An m×n matrix has m rows and n columns. So a 3x4 matrix
looks like

A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34




Individual elements are indicated again with subscripts. Importantly the matrix
performs a linear operation on a vector. When the matrix (m×n) operates on a n-
dimensional vector, the output is a vector (m-dimensional). The matrix operation
on a vector is written as w = A.v or w = Av. It is defined as

wi =
n∑

j=1

aijvj

For example, if A =
(

1 2
3 0

)
and v =

(
1
3

)
, Av =

(
1.1 + 2.3
3.1 + 0

)
=

(
7
3

)
.

We can subtract and add matrices in a component-wise fashion, C = A + B,
means that Cij = Aij + Bij . Of course the matrices A and B need to be the same
size for this operation. Scalar multiplication is also component wise, if C = αA,
then Cij = αAij . Note, that these definitions are much like the definitions for
vectors.

Matrix multiplication

Matrices can also be multiplied with each other to form a new matrix, this way
k ×m matrix A, is multiplied with m× n matrix B. The result is again a matrix,
a k × n matrix, it is written as C = A.B, the components of C are

Cik = (A.B)ik =
m∑

j=1

aijbjk

The new matrix transforms a n dimensional vector into a k dimensional one.
It does not matter in which sequence we do the multiplication, that is A(Bv) =
(AB)v, and also A(BC) = (AB)C. Applying a number of matrix multiplications
subsequently on a vector, is identical to applying the matrix product on the vec-
tor. We can also define powers of matrices such as A3 = A.A.A using the above
multiplication rule.

Be extremely careful: If we have two numbers x and y, then xy = yx. But
the matrix products are not necessarily commuting, that is, in general A.B 6=
B.A. For instance

(
1 2
3 0

)(
0 1
0 0

)
=

(
0 1
0 3

)
, while

(
0 1
0 0

)(
1 2
3 0

)
=

(
3 0
0 0

)
. With the matrices in the next section, you should be able to create ex-

amples of both commuting (when AB = BA) and non-commuting products (when
AB 6= BA).

Linearity

Matrix operations are linear, because they obey the two requirements for lin-
earity:

1) A(αx) = αAx
2) A(x + y) = Ax + Ay
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You can easily prove this using the definitions. Linearity is a very important
property. If a system is linear and once we know how a few vectors transform, it
allows us to ’predict’ the outcomes of a certain matrix transformation on any given
vector.

Relevance to cognition

Matrices can be used to describe the weights for one layer on neurons to
the next layer. When we dealt with a single output neuron, the weight were
a vector, but if we have multiple outputs, the weights can be conviniently
written as a matrix.
The product of linear transformations, such as ABx, is again a linear trans-
formation. That is nice for mathematicians, but a bit boring. When dealing
with neural networks this means that adding extra layers to a network with
linear neurons (stacking linear operations) will not increase its computa-
tional power. This changes dramatically when the nodes have a non-linear
input-output relation, like the examples in the previous chapter and the per-
ceptron of the next chapter. Having a non-linear neuron hugely increases
the number of possible transformations, but the convenient results from
linear algebra are no longer valid.

Transpose of a matrix

Transpose denoted AT denotes the transpose of the matrix. It is the matrix with
the rows and columns interchanged, so (AT )ij = Aji. Example in two dimensions

A =
(

a b
c d

)
, AT =

(
a c
b d

)
. We call a matrix symmetric if AT = A.

As an aside, mainly mentioned for completeness: when dealing with complex-
valued matrices a complex conjugation is often combined with transposing, this is

called matrix conjugation. Example A =
(

a + bi c + di
e f

)
, A† =

(
a− bi e
c− di f

)

2.1 Common matrices

Some common linear transformations in two-dimensions are rotation, mirroring and
projection.
Rotation over an angle φ is given by the matrix

Rφ =
(

cos φ − sin φ
sin φ cos φ

)

For example R =
(

0 −1
1 0

)
rotates vector over 90o.

Mirroring in a line which has angle φ w.r.t to the x-axis:

Mφ =
(

cos φ sin φ
sin φ − cosφ

)

Projection onto the vector a = (a1, a2), with |a| = 1, can be done with a matrix

P =
(

a2
1 a1a2

a1a2 a2
2

)

For any projection matrix one has P 2 = P . This makes sense as projecting an
already projected vector, P (P.v), should not change it anymore. It is a good exercise
to check for the above matrix. Note, the projection matrix operating on a vector
gives the projected vector, whereas the inner product calculates the length of the
projection.

11



2.2 Determinants

The determinant of the matrix is a useful concept. One way to introduce it, is
the following: Suppose we create a unit (hyper)-cube with the basis vectors. For
instance, in two dimensions the basis vectors (0, 1) and (1, 0) span the square (0, 0),
(0, 1), (1, 0), (1, 1). Now we transform the vectors that span the square. The
square is mapped to a parallelogram (or parallelepiped in 3D). Now measure its area
spanned by the transformed vectors. The ratio in the area turns out to be a useful
quantity and is given by the absolute value of the determinant. The determinant is
also denoted |A|.

For a 2× 2 matrix the determinant is

|A| = det(A) = det

(
a b
c d

)
≡ ad− bc

For example, the determinant of the rotation matrix is det(R) = cos2 φ+sin2 φ = 1,
which shoudl not surprise you given our discussion of the interpretation of the
determinant.
For a 3× 3 dimensional matrix

det(A) = det




a b c
d e f
g h i


 ≡ aei + bfg + cdh− gec− hfa− idb

The equation in higher dimensions is more tedious, but Matlab won’t have a problem
with it. The function is called det(A).

Unlike the ratio of areas, the determinant can also be negative. The sign is
negative when the parallelogram is flipped by the matrix transformation.

The determinant can also be used to check whether a certain set of vectors span
a basis. Hereto line up the column vectors to create a matrix. If the determinant
is zero, the vectors are linearly dependent and hence do not form a basis.

2.3 Identity and inversion

The simplest transformation leaves the vectors unaffected. This transformation is
given by the identity matrix denoted I. It has zeros everywhere except on the

diagonal, so in two dimensions I =
(

1 0
0 1

)
. You should check that for any

vector v, one has v = I.v. The identity matrix has only elements on the diagonal,
such matrices are called diagonal matrices, they have simplified properties: the
determinant is simply the product of all diagonal elements, and all diagonal matrices
commute with each other.

Most square matrix transformations have an inverse, denoted A−1. Inverses only
exists for square matrices (although more general concepts such as pseudo-inverses
have been defined for non-square matrices). The inverse is implicitly defined as

A.A−1 = I

It basically says that the inverse should undo the matrix transformation. If A
is a n× n matrix then this equation actually consists of one equation per element,
hence we have n2 equations. We have n2 unknowns, because the unknown matrix

A−1 has n2 entries. For instance, suppose A =
(

1 2
0 1

)
if we write the elements

of A−1 as bij we have b11 + 2b21 = 1, b12 + 2b22 = 0, b21 = 0, b22 = 1. These
equations are independent and we can solve this, and thus find A−1. There are
more sophisticated methods to calculate inverses. Matlab command is inv(A).

12



But not every matrix has an inverse. A necessary and sufficient condition is
that the determinant of the matrix is non-zero. A counter-example is given by the
projection matrix. Its determinant is zero, and indeed, one cannot invert or undo
the projection as after a projection the original vector is unknown.

Note that the identity matrix is its own inverse.
When calculating with matrices and inverses it is important to keep in mind

that they do not always commute. Therefor we have to keep track of the order of
the terms. For instance, if we have A−1B = C, we can multiply from the left with
A to get AA−1B = AC or B = AC. But a multiplication from the right gives
A−1BA = CA.

2.4 Solving matrix equations

If we have a set of linear equations, we can use matrices to solve them. Suppose
we want to solve x1 + 2x2 = 5, 3x1 = 2 for x1 and x2 (the typical “John is five
years older then Mary, and twice her age” type of problem). This is conveniently

rewritten as a matrix equation Ax = y, where A =
(

1 2
3 0

)
, y = (5, 2).

Suppose we want to solve an equation Ax = y , where A and y are given. There
are a few scenarios:

• This equation will have an unique solution when det(A) 6= 0. The solution is
simply x = A−1y.

• In the special case that det(A) 6= 0 and y = 0 the only solution is x = 0.

• When det(A) = 0 there is a whole hyper-plane of solutions when y = 0.

• Finally, when det(A) = 0 but y 6= 0, there can be many or no solutions.

2.5 Eigenvectors

Eigenvectors are those vectors that maintain their direction after the matrix multi-
plication. That is, they obey

Avi = λivi (1)

where λi is called the (i-th) eigenvalue, and vi is called the corresponding eigen-
vector (there is no standard letter for the eigenvector). There are as many eigen-
vectors as there are dimensions.

To find the eigenvalues we write the above equation as (A − λI)vi = 0, next
we look for viwhich solves this. The equation has always trivial solutions, vi = 0,
but those don’t interest us. From above we know that for this equation to have
a non-trivial solution, we need det(A − λI) = 0. The eigenvalues are those values
of λ that satisfy this equation. To find them we write out the definition of the
determinant, this will yield a polynomial in λ with an order equal to the number of
dimensions. The solutions to this polynomial are the eigenvalues.

Next, we need to determine the eigenvectors. Each eigenvector has an associated
eigenvector. To find the eigenvectors, one plugs in a found eigenvalue and solves
Eq.(1).

Example for the mirroring matrix: det(A−λI) = det
(

cosφ− λ sin φ
sin φ − cosφ− λ

)
=

λ2 − 1. So in order for the determinant to be zero, we need λ = ±1. So the eigen-
values are 1 and -1. Next, we calculate the eigenvector associated to λ = 1. If we
write this eigenvector as v = (x1, x2), we have A.v = λv, or

x1 cos φ + x2 sinφ = x1

x1 sin φ− x2 cosφ = x2

13



One solution to these equations is (x1, x2) = (1+cos φ, sin φ). But it is not difficult
to see that there is a whole line of solutions, as the eigenvector’s length is not fixed.

• Eigenvalues can be zero.

• Some eigenvalues can share the same value, this is called degenerate.

• When the eigenvalues are not degenerate, the eigenvectors form a basis.

• Eigenvalues can also be complex, as is the case for the rotation matrix.

• When the matrix is symmetric, the eigenvalues are real, and what is more,
the eigenvectors form an orthogonal basis.1

Using eigenvectors can be very convenient in particular when they form a basis.
Because rather than having to study a full matrix transformation now we only need
to describe the transformations of the eigen vectors. In other words, the equations
de-couple. We will see some examples below.

2.6 Covariance matrix
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Figure 4: Two dimensional Gaussian distributions. Left: the correlation matrix

was C =
(

1 1
2

1
2 1

)
and Right: C =

(
1 − 1

2
− 1

2 1

)
(anti-correlated). The mean

was (0, 0).

A special matrix is the covariance matrix. It describes how observed data points
are related. It is therefore important in data-analysis and statistics. Before we can
describe it, we need some statistics.

Given a probability distribution P (x), which is normalized such that
∫

dxP (x) =
1. Now the mean is

µ = 〈x〉 =
∫

dxP (x)x

The triangular brackets denote the average. The variance is given by2

σ2 = 〈δx2〉 = −〈x〉2 +
∫

dxP (x)x2

1In case of matrices with complex entries: if the matrix is Hermitian: A† = A, which means
A∗ij = Aji, then 1) all eigenvalues are real, and 2) the eigenvectors form a orthogonal basis of the
space.

2Similar definitions hold when we measure the statistics of given data. This is called descrip-
tive statistics. Suppose we measure N instances of a data xµ. The mean vector is defined as
〈x〉 = 1

N

P
µ xµ; the variance is given by 〈δx2〉 = 1

N−1

P
(xµ − 〈x〉)2 = 1

N−1

P
µ(xµ)2 − 〈x〉2.
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You have probably already encountered the one-dimensional Gaussian distribu-
tion

P (x) =
1√

2πσ2
exp[−(x− µ)2/2σ2]

This distribution has mean µ, variance σ2, and like any decent probability distribu-
tion it is normalized. You can check these three facts, but these are tricky integrals;
you could try it with ’maple’ or ’mathematica’.

When we deal with higher dimensional distributions, similar definitions hold.
Note, the mean becomes a vector. The variance is slightly more tricky. The vari-
ance generalizes to a matrix, the covariance matrix. The covariance between two
components of the vector is defined as

Cij = 〈xixj〉 − 〈xi〉〈xj〉

The covariance matrix C has entries Cij . Note that by construction the matrix is
symmetric.

When the components of x are independent the matrix has only diagonal terms,
as all terms for which i 6= j disappear.

A multi-dimensional Gaussian distribution is given by

P (x) =
1√

(2π)N det(C)
exp[−1

2
(x− µ)C−1(x− µ)] (2)

When the components of x are independent, the matrix C and its inverse are diago-
nal. As a result the distribution factorizes as expected as P (x) = P (x1)P (x2) . . . P (xN ).

When the two variable are correlated, the probability distribution looks as given
in Fig. 4. For instance, in the left case, the variables are positively correlated. It
is more common to find a larger value for x2 when x1 is large. In other words, x1

predicts x2.
However, always be careful to not confuse correlation with causality. Saying

that poor education and a shorter life-expectancy are correlated, does not mean
one causes the other...

Relevance to cognition

We have already seen that the size of the visual input space is tremendous.
However, there are often correlations present between the inputs. One
believes that the nervous system is tuned to deal with these correlations
and extract information from them. (see exercises)

2.6.1 Matlab notes

In Matlab the ’*’ operator implements a matrix product.
octave:1> m=[1,2;3 ,-1]
m =
1 2
3 -1
octave:2> m*[2 0]’
ans=
2
6
In the previous chapter we used the dot command to calculate inner products. You
can also write inner products using the ’*’ operator. Note, that the definition of
the inner product and the matrix product are quite similar. To Matlab vectors are
nothing but 1× n or n× 1 matrices. The apostrophe introduced earlier transposes
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the matrix, for vectors this means that a column vector becomes a row vector and
vice versa. When you use ’*’, you have to be careful whether the vectors are column
or row vectors.
octave:1> a=[1 2 1]% size=1x3
a =1 2 1
octave:2> b=[1 1 0]’ % size=3x1
b =1
1
0
octave:15> a*b % inner product
ans = 3
octave:5> b*a % ’tensor’ or ’outer’ product
ans =
1 2 1
1 2 1
0 0 0

Matlab’s convention is that it sums over the inner indexes. As you see multiply-
ing a 1× 3 with a 3× 1 array gives a 1× 1 array, i.e. a scalar (the middle indexes
are contracted). On the other hand multiplying a 3× 1 with a 1 × 3 array gives a
3 × 3 array, or matrix. If the dimensions don’t match and you try to multiply, it
will complain.

octave:6> m*a %
m*a error: operator *: nonconformant arguments (op1 is 2x2, op2 is 1x3)

Matrix functions in Matlab Matlab has many special matrices and matrix
functions

octave:6> det(m) % determinant
ans= -7

octave:7> lam=eig(m) %eigen values of m
lam =
2.6458
-2.6458

octave:7> [v,lam]=eig(m) % eigenvalues and eigenvectors of m
v =
0.77218 -0.48097
0.63541 0.87674

lam =
2.64575 0.00000
0.00000 -2.64575

octave:9> eye(3) %identity matrix in 3 dimensions
ans =
1 0 0
0 1 0
0 0 1

Unless you tell Matlab otherwise, all multiplications are matrix multiplications.
However, in some cases you want to multiply vectors or matrices component-wise.
For instance, the components of a describe the unit-price of each item in a list
of items, and b describes the quantity of each item, then the total price for the
different items is ci = aibi. In Matlab we can calculated this using the ’.*’ operator.

octave:10> a=[0.12 0.4]; b=[2 3]; a.*b
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ans= [0.24 1.2]
Even more tricky is the division operator. With a/m will solve c = bA−1, that is

the c for which cA = b. (In some applications this is a useful thing to do, however,
for us it is mainly confusing).

octave:10> c=a/m
c= [0.188 -0.022]
octave:11> c*m % check the solution.
ans= [0.12 0.4]

Using the command a/b when a and b are vectors, Matlab will try to solve
c=b/a. As this is an ill-formed matrix equation, and Matlab will return the least
square solution. To do component-wise division use the ’./’ operator. Finally, also
the power operator ˆ has the variant ’.ˆ’.

2.7 Exercises

1. Calculate the matrix product AB, where A =
(

1 0
1 2

)
and B =

( −2 0
3 2

)
.

Also calculate the determinants of the individual matrices and of the product
matrix. Given the geometric definition of the determinant, do you think that
in general det(AB) = det(A) det(B)?

2. The product of linear transformations, such as A(Bx), is again a linear trans-
formation. Show this.

3. The translation that maps v to w is given by w = v+c, where v is the original
vector and c is some constant vector. This is also a common transformation,
but it is not linear. Show why.

4. Suppose you have an unknown 3x3 matrix, but you can apply it to any vector
you want and read out the transformed vector. What is the easiest way to
find out all the matrix entries?

5. As mentioned, the matrix product do not always commute. Take a rotation
over π/2 followed by a mirroring in a line that has zero angle with the x-axis.
What is the matrix that describes the product of these two operations, i.e. cal-
culate M0Rπ/2. Now also calculate Rπ/2M0. Is the answer the same? Draw a
picture how a vector like (1, 1) is transformed under both transformations and
explain. Without explicit calculation determine whether RπRπ/2 = Rπ/2Rπ.

6. Calculate the determinants of the rotation, mirroring and projection matrices.
Interpret your result.

7. What are the inverses of the mirroring and rotation matrices? And of the
projection matrix? Either calculate or think.

8. Solve, if possible, each of the following sets of equations: {x+y = 1, x−y = 2},
{x+ y = 0, x + y = 2}, {x+ y = 0, x− y = 0}, {x+ y = 0, x+ y = 0}. Check
with Section 2.4.

9. Check that (x1, x2) = (1+cos φ, sin φ) is indeed an eigenvector of the mirroring
matrix. What is the other one? Sketch them together with the line with angle
φ.

10. What is the determinant of a diagonal matrix in two or three dimensions?
What about n dimensions?
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11. Like Fig. 4, plot in a contour-plot the joint Gaussian distribution in case C =(
1 0
0 2

)
. (Note how easily this matrix is inverted). Using the definition of

the multi-dimensional Gaussian distribution Eq. 2, check that the distribution
factorizes.

12. Generating a pair of uncorrelated random Gaussian distributed variables is
easy on a computer (e.g. ’randn(1,2)’ in Matlab). How can you generate
correlated or anti-correlated numbers?

13. Consider an arbitrary photograph of an object. Now pick an arbitrary pixel
in it. Which pixels are strongly correlated with the chosen pixel?
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3 Application: Perceptron

3.1 More about neurons

Figure 5: Left: Cartoon of a biological neuron. Middle: Real neurons produce
action potentials or spikes in response to excitatory input.
Right: In this case activity from a motion detection neuron was measured over some
50 trials. In every trial the spikes came at different times (bottom raster plot, each
dot is a spike). The averaged activity is given by the firing rate (top plot), typically
ranging from 0 to a few hundred Hz.

The human brain contains about 1011 neurons, each with about 104 inputs
(synapses). Biological neurons produce stereotypic discrete events, called action
potentials or spikes in response to excitatory input, Fig. 5.
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In the following we will describe the neurons with their firing rate rather than
their precise spike times. One argument is that the timing of the spikes in biology
is often not very precise and varies from trial to trial, Fig. 5right, so maybe precise
timing does not matter. Whether this is always a good approximation to describe
the biological brain is not very clear.

A more relaxed attitude that we will follow here is that the biological systems
are an inspiration for our thinking, and we are simply interested in what neuron-like
computations can do.

3.2 Perceptron

The perceptron is one of the simplest neurally inspired supervised learning sys-
tems. It learns to do categorisations. In supervised learning a teacher is present
that judges the result, usually after each trial, and feeds back so that the network
can be adjusted. [In contrast, in unsupervised learning the learning rule extracts
information about world by itself by using statistical properties of the world.] The
perceptron is shown in Fig. 6.

Figure 6: The perceptron: n inputs are summed with weights w to give the total
input, which is goes into a non-linearity. The additional input is the bias b can be
used to set the threshold of the unit.
Right: Connecting the perceptron to a retina.

For convenience we will assume the inputs are on some kind of retina, Fig. 6.
One typical task is to classify images. For instance, can we construct a digit detector
which is robust to noise? We write the inputs as a vector x, and write weights as
vector w. The total input is now x.w. (Both w and x are unconstrained which is
slightly un-biological). We label different patterns with index µ. Pattern 1: xµ=1

etc. Although in the end it would be nice to have multiple output units, one for
each digit (see Fig. 7left ), we start with a single output node.

Suppose we have a single binary node, where the output y is given by

y = 2H(w.x)− 1

Where H(x) is the Heaviside step function: H(x) = 0 if x < 0, H(x) = 1 if
x > 0. That means that the output is either +1 or -1, depending on whether x.w
was greater or less than zero. (this is a slight variant from above, but it is more
practical here). The data set we want to classify consists of one subset of data that
should yield a ’-1’ response, the other subset should yield ’1’ response zµ = 1. The
z is the known desired outcome, in other words, the class labels. In our example,
we can set z = 1 for ’8’-like figures, and -1 for all other figures.
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Input

5 6 7 8 9

0 1 2 3 4

Hidden

Figure 7: Left: An array of perceptrons (top layer), each responsible for a different
digit.
Right: We would like the detector to be robust against small variations in the input
(noise). So the depicted variants of the input should be detected as an ’8’ as well.

3.3 Perceptron learning rule

We now present examples from the set to the perceptron. For each example we
determine if the perceptron produced the right response and if not, we adjust the
weights. The perceptron can be trained as follows: Loop over the input data and
apply the perceptron learning rule:

• If output was correct, don’t do anything.

• Change the weight if output o was wrong:

∆wj = η(zµ − yµ)xµ
j

wj ⇒ wj + ∆wj

where η is a parameter called the learning rate which determines how much the
weights are updated each time (its value is not important in this particular learning
rule). The full perceptron learning rule is slightly more complicated leaves a little
gap between the two categories (for details see [Hertz et al., 1991]). Using the full
perceptron learning rule it can be proved that learning stops and if the classification
can be learned, it converges in a finite number of steps.

An important question is whether the perceptron will work on any type of bi-
nary classification problem. It turns out that not every problem be learned by the
perceptron. The perceptron can only learn linearly separable categorization, i.e.
the data-points can be divided by a line or plane. Consider for instance the boolean
functions of two variables. These can be represented in the two-dimensional plane,
Fig. 8. The AND and OR function are separable, but the XOR (exclusive or) and
the IDENTITY function are not linearly separable. This means these functions
cannot be learned or represented by the perceptron, however, a layered network
will do the trick, as we will see below.

Bias

So far we have assumed that separation plane goes through origin. This restriction
can be avoided by having one additional ’always on’ input and train its weight as
well. For the AND you would for example present patterns (1,0,0), (1,0,1), (1,1,0),
(1,1,1). This introduces a bias (a trick to remember !). The weight of the bias term
is trained just with the above rule.
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in AND OR XOR IDENTITY
-1,-1 -1 -1 -1 1
-1,1 -1 1 1 -1
1,-1 -1 1 1 -1
11 1 1 -1 1

Figure 8: Left: Truth table of various Boolean functions. Right: Representation of
the XOR function in the plane. The XOR is one only when either input is one, but
not when both are one.
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Figure 9: Transformation of the input patterns. The dendrogram of the input
patterns (10 digits + distortion) is shown left and middle. Right: the dendrogram
of the output activations for a network with ten outputs after learning.

Using perceptrons we can easily create a digit recognizer with multiple outputs,
one for each digit. When a particular digit is presented, only the correct node
becomes active. We can then test the network on a set of digit images and distorted
images. The dendrogram of the inputs is shown on the left, the dendrogram of the
output is on the right, Fig. 9. Note the generalization in right plot, all distorted
versions of the ’8’ give an identical response. Such single bit errors are easily
corrected by the network. However this digit recognizer is not really state of the
art, and other errors and natural variations amongst the inputs can not be easily
corrected. The network will fail badly if the digits are scaled in size or shifted along
the retina.3

Relevance for -computation-

Note that computation and memory are tightly linked together in the perceptron. This is
very different from a von Neumann computer where memory and processing are split. A
von Neumann computer would take the input, retrieve the weight vector from memory,
calculate the inner product in the central processing unit, and then go on to the next
operation. Here processing is done in parallel, and can be, in principle, much faster,
but as a disadvantage, we need a different node for each type of computation.

3An advanced digit recognizer using neural nets can be found at: http://yann.lecun.com/

22



3.4 Exercises

1. Sketch the AND function in the same way that the XOR was shown. Now
construct a perceptron with the right weights that implements it. (Note, bias
!)

2. Discuss the use and realism of the perceptron and its learning rule.

3. Perceptron algorithm. Apply the perceptron algorithm to between the fol-
lowing two sets of data vectors: set 1:(1, 0) and (1, 1) for which we want the
perceptron to give a 1 as ouput; and set 2: (−1, 0) for which we want the
perceptron to ouput -1. Cycle through all data until all points are classified
correctly. Sketch the data and the final weight vector. Note that when you
start with w = (0, 0) the output will be undefined; in order for the perceptron
to be robust to noise, it is good to apply the learning rule in this case as well.
Optional: Create a non-learn-able data-set, and see how the learning pro-
gresses.

4. Template matching and noisy inputs. As indicated in the lectures, a single
neuron can be seen as a template matcher. Here we study template matching
in the presence of noise. Suppose we have a two-dimensional input xa and a
background signal xb, both corrupted with independent Gaussian noise. No
matter how well we train the perceptron, it will sometimes make errors be-
cause of the noise. Suppose the average signal to be detected is 〈xa〉 = (1, 2)
and the average background is

〈
xb

〉
= (0, 0) (with 〈.〉 we denote an average).

Assume first that the noise equally strong along both dimensions.
a) How would you choose the weight-vector in this case so as to minimize the
errors?

Suppose now that the noise is stronger in one input than in the other one. The
two-dimensional probability distribution P (xa) = 1√

2πσ1

1√
2πσ2

exp[−(xa
1 −

〈xa
1〉)2/2σ2

1 ] exp[−(xa
2 − 〈xa

2〉)2/2σ2
2 ], where xa = (xa

1 , xa
2) and σ1 and σ2 are

the standard deviations in the two inputs. xb has the same distribution.
b) Indicate roughly how would choose the weight vector in the case that
σ1 ¿ σ2 and σ1 À σ2. The best weight vector causes the least overlap in the
projections. Making a sketch of the situation is helpful. Draw in the x-plane
the mean values of xa and xb and indicate the noise around them with an
ellipse.
The formal solution to this problem is called the Fisher linear discriminator.
It maximizes the signal-to-noise ratio of y, where y is the projection of the
input y = w.x.

5. Optional: Probabilistic interpretation of the logistic function. In general,
Gaussian noise in more than one dimension is described by a covariance ma-
trix with entries Cij = 〈(xi − 〈xi〉) (xj − 〈xj〉)〉. We label the input stimulus
with s = {a, b}. Now the probability distribution of is given by P (x|s = a) =

1√
2π det(C−1)

exp[− 1
2 (x − 〈xa〉)T C−1 (x − 〈xa〉)], where C−1 is the inverse of

C. Assume that both stimuli are equally likely, i.e. P (s = a) = P (s = b).
Show that P (s = a|x) can be written as P (s = a|x) = 1

1+exp(−w.x−θ) , ex-
press w and θ in 〈xa〉, 〈

xb
〉

and C. Use Bayes theorem which says that
P (s|x) = P (x|s) P (s)

P (x) , with P (x) =
∑

s P (x|s)P (s). This means that the lo-
gistic function, often used to model neurons, can be interpreted as a hypothesis
tester.
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4 Differentiation and extrema

Differentiation calculates the local slope of a function.The definition is

f ′(x) =
df(x)
dx

= lim
h→0

f(x + h)− f(x)
h

Remember the following rules:

• d
dx (f(x) + g(x)) = d

dxf(x) + d
dxg(x) (sum rule)

• d
dx [f(x)g(x)] = f(x) d

dxg(x) + g(x) d
dxf(x) (product rule)

• d
dxf(g(x)) = df

dg
dg
dx (partial differentiation)

These rules can be checked by filling in the definition. Higher order derivatives are
defined by applying the same procedure in sequence, i.e. d2f

dx2 = f ′′(x) = (f ′(x))′.
In practice you hardly ever need beyond second order derivatives.

Differentiation is linear in that d
dx (f+g) = d

dxf+ d
dxg and d

dx (αf(x)) = α d
dxf(x).

4.1 Higher dimensions

Much the same rules apply when we have a function of multiple variables such as
f(x, y, z). As we proceed to higher dimensions we introduce the partial derivative
which is written as.

∂f

∂x

It denotes differentiation w.r.t. x only. The difference with the regular differential
will not be very important for us. However, for instance if F (t) = f(x(t), y(t)) then
∂F
∂t = 0, but dF

dt = ∂f
∂x

dx
dt + ∂f

∂y
dy
dt .

In higher dimensions we will in particular need the gradient. It is denoted with
∇ and is defined as

∇f(x1, x2, . . .) =
(

∂f

∂x1
,

∂f

∂x2
, . . .

)

The gradient is a vector with as many components as the function has variables
we differentiate towards. An intuitive example comes from physics where F(x, y) =
−∇V (x, y) = (−∂V

∂x ,−∂V
∂y ), that is, the force in a (two)dimensional potential V ,

points in the negative direction of the gradient.
In this example the function V maps from two dimensions (x and y) to one

dimension. More generally, there are also functions that map one dimension into
three dimensions (a curve in 3D), from two to three (curved plane), and from three
to three, etc.

4.2 Taylor expansion

An important application of differentiation is the Taylor expansion. It allows us to
approximate a function in the neighbourhood of a known value using its derivatives

f(x) = f(x0) + (x− x0)f ′(x0) +
1
2
(x− x0)2f ′′(x0) + . . . +

1
k!

(x− x0)kf (k)(x0) + . . .

When x0 = 0, you have f(x) = f(0) + xf ′(x0) + 1
2x2f ′′(x0) + . . .

Some important ones (x0 is assumed to be 0 and x is assumed small) are

• exp(x) ≈ 1 + x + 1
2x2

• log(1 + x) ≈ x− 1
2x2
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• 1
1+x ≈ 1− x + x2

The use of these expansions is the following: When developing a model the expres-
sions get rapidly much too complicated to analyze. One can then still try to see
how the system will react to small changes in inputs by using these expansions. Of
course, one should always check if the approximations made were valid. This can
be done either in simulation or by calculating the size of the higher order terms.

As an example suppose we have a network that consists of two nodes in series,
such that the output is y = tanh(tanh(x)). How does y vary with small changes
of x around x = 0? Because tanh(x) = [exp(x) − exp(−x)]/[exp(−x) + exp(x)],
tanh(x) ≈ 2x/2 = x. So around x = 0 we have y ≈ x.

4.3 Extrema

Another important application of differentiation is the maximization or minimiza-
tion of a function. At the maxima and minima of a (smooth) function the derivative
is zero for all its dimensions. Just for ease of language we will assume we are looking
for a minimum.

In the simplest cases one can find the minima explicitly by differentiating and
solving when the derivative to be equal to zero. A minimum can be either global
(truly the minimal value) or local (the minimum in a local region). For example,
f(x) = sin x + x2/10 has many local minima but only one global minimum. If we
have no analytical expression the local minima are relatively easy to find (numeri-
cally), but the global minimum is hard to find.

Relevance for cognition

Also in the study of cognitive system, we often try to optimize functions.
Just a few examples are: ’fitness’ in evolution, energy consumption in the
nervous system (how to develop an energy efficient brain), neural networks
that minimize errors, and neural codes that maximize information. Often
one tries to argue that due to the pressure of evolution the cognitive pro-
cesses are the optimal solution to the problem at hand given the biological
constraints. Another example we will explore below is the error function
used to train neural networks.

There are many such cost functions and it is not always obvious which one
is the best choice (in case we want to build something) or most natural
choice (in case we study the biology).

4.4 Constrained extrema: Lagrange multipliers

Sometimes we are looking for a minimum but under constraints. For instance we
might want to maximize the output of a node, but the weights are constrained.

Suppose we are looking for the minimum of f(x), under the constraint g(x) = a.
In some cases one can directly eliminate one of the variables. For instance we want
the biggest area rectangle f(x) = x1x2 given that the sum of the height and the
width is given, x1 + x2 = L. So we need to maximize f(x) = x1(L− x1), which is
maximal if x1 = x2 = L/2.

If we cannot eliminate variables we can use Lagrange multipliers. The first step
is to express the constraint as c(x) = 0, so c(x) = g(x) − a in this case. The trick
is that we search for minima in f(x) + λc(x), that is we solve

∂

∂xi
[f(x) + λc(x)] = 0
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for all i. Given that x is n-dimensional there will be n such equations.
Example: We like to know what is the biggest rectangle that fits on a circle of

radius r. If we assume that the circle is centered around (0, 0), the area of this
rectangle is given by f(x) = 4x1x2. The constraint fits on a circle and is written
as c(x) = x2

1 + x2
2 − r2. So that we have to solve ∂

∂x1
[4x1x2 + λ(x2

1 + x2
2 − r2)] =

4x2 + 2λx1 = 0 and 4x1 + 2λx2 = 0. The solution is x1 = x2 and λ = −2. The
value of λ has no importance to us. But x1 = x2 tells us that a square is the best
solution, as you might have expected.

4.5 Numerically looking for extrema

In high dimensional spaces, the search for extrema is using often done numerically.
The problem can be compared to walking in a mountainous landscape with ridges,
canyon and plains. As an example back-propagation networks (see below) are trying
to minimize the difference between the actual output of the network and the desired
output.

A simple, but not very good method is gradient descent. It simply means that
at each point we follow the steepest way down. For instance we want to minimize
f(x, y) = x2 + 2y2. The gradient is the vector ∇f(x, y) = (∂f

∂x , ∂f
∂y ) = (2x, 4y).

From a starting point (x0, y0) one determines the next point as (x1, y1) = (x0, y0)−
η∇f(x0, y0), and this is repeated until the vector no longer changes. The step size
η can here be 0.1, but has to be chosen carefully in general. If you implement this
algorithm you we see that it works quite well, however our function was particularly
well-behaved.

This method can also be used when the function f is unknown and the gradient
has to be calculated numerically.

Two problems occur:
1) The convergence should ideally be accurate but fast. Combining these two

objectives is tricky: The search should not take too big steps, which could lead
to overshooting the minimum. On the other hand too small steps will lead to
slow performance. Many methods have been developed to deal with this problem
[Press et al., 1988] (free online).

2 ) The other problem that one might encounter are local minima. The problem
is like hill climbing in the mist: it is easy to reach a peak, but it is hard to be sure
that you reached the highest peak. A simple trick is to restart the program with
different starting conditions.

4.6 Exercises

1. Differentiate d
dx exp(−x2), d

dx
1

1+exp(−x) ,
d
dx tanh(x), d

dz zy2.

2. Calculate once using the sum rule and once partial differentiation d
dx3x. Cal-

culate d
dxx2 with the product rule and also with partial differentiation.

3. Differentiate d
dy [A.v(y)], where the matrix A =

(
1 7
4 2

)
and v(y) =

(
y2

g(y)

)
.

Conclusion?

4. We try to minimize the cost of a cardboard box. The cost is f(x, y, z) =
3xy+2xz+2zy, the volume of the box is V = xyz. Using Lagrange multipliers
derive the lowest cost solution for a given volume.

5. Sketch a few functions for which it is either very hard or very easy to find
their minimum.
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6. Money in the bank accumulates as m(1 + r)n, where m is the starting capital
r is the interest and n is the number of years. The interest rate is low (r ¿ 1).
Derive an approximate expression for the amount after n years using a 2nd-
order Taylor expansion (i.e. including terms r2) around r = 0. Also estimate
the error you make in this approximation. Check numerically for a few cases.
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5 Application: The Back-propagation algorithm

We saw that the perceptron can not compute nor learn problems that are not linearly
separable. The simplest example of this we have already encountered, namely the
XOR problem. But a network with hidden layers can perform the computation.
The network shown in Fig. 10 left, calculates the XOR function. Check that this
network indeed implements the XOR function.

5.1 Multi-Layer perceptron
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Figure 10: Left: A network that calculates the XOR function. Here the inputs
are 0 or 1, and the open circles are binary threshold nodes with outputs 0/1. The
numbers in the nodes are the thresholds for each unit. The rightmost node has
output ’0’ when its total input is less than 0.5, the output is ’1’ otherwise.
Right: General layout of a multilayer perceptron network.

The important difference with the perceptron is that there is an extra layer of
nodes, the so-called hidden layer. The general layout of the multi-layer percep-
tron (MLP) network is in Fig. 10 (right). The nodes usually have a tanh or logistic
transfer function.

We use the naming convention shown in Fig. 10. The weights between the layers
are written as matrices. The output of node i is

oi = g(hi) = g(
∑

j

WijXj)

= g(
∑

j

Wij g(
∑

k

wjkxk))

where we label the inputs with k and the hidden layers with j.
The task of the network is to learn a certain mapping between input vectors and

output vectors. Note, both the input and the output can have many dimensions.
For example, the task can be to see whether the digit is an ’8’, but we might for
instance also want other outputs that indicate the size of the digit.

The computational power of these networks with one hidden layer is striking:
A network with one hidden layer can approximate any continuous
function! More than one hidden layer does not increase the class of problems
that can be learned. Knowing this universal function approximation property of
layered networks, the next question is how the train the network. We have now
all the necessary ingredients to derive the back-propagation learning rule for neural
networks. When the network gives the incorrect response we change the function of
the network by adjusting its weights (and biases). We hope that after enough trials
the learning rule converges (this is not guaranteed) and the network always gives
the right answer. It is again a supervised learning algorithm: the desired outcome
is known for every input pattern.
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5.2 Back-propagation learning rule

To derive the learning rule we first need an error function or cost function, which
tells us how well the network is performing. We want the error function to have a
global minimum, to be smooth, and to have well-defined derivatives. A logical, but
not unique choice is

error : E =
1
2

∑

i

(oi − yi)2

where yi is the desired output of the network and where oi is the actual output of
the network. Note that indeed this function has the required characteristics, it is
smooth and differentiable. This is also the error that you minimize when you fit a
straight line through some data points (see ’polyfit’ in Matlab). The only way it
can reach its minimal value of zero, is when oi = yi for all i.

When tested for all training data the error becomes

E =
1
2

∑
µ

∑

i

(oµ
i − yµ

i )2

so if the error is zero for all patterns, we have oµ
i = yµ

i for all patterns µ, in other
words, the network works perfectly.

The learning adjusts the weights so as to reduce the value of E by checking if
a small change in a particular weight would reduce E. It does this be calculating
the derivatives of E w.r.t. the weights; it is therefore a so called gradient method.
The trick will be not only to apply this to the weights connecting the hidden to the
last layer (denoted with W ), but also to the weight connecting the input layer to
the hidden layer (denoted w). This gives the so-called Error back-propagation
rule.

Remember that oi = g(hi) = g(
∑

j WijXj), where Xj = g(
∑

k wjkxk) and hi is
the net input to node i. The learning rule for the weights that connect the hidden
layer to the output layer is Wij → Wij + ∆Wij with

∆Wij = −η
dE

dWij

= −η
d

dWij


1

2
[yi − g(

∑

j′
Wij′Xj′)]2




= η(yi − oi)g′(hi)Xj (3)

where hi is net input to output node i, that is hi =
∑

j WijXj . Again η is a small
number which determines the learning rate, its value has to be determined with a
bit of trial and error.4

We can rewrite Eq. 3 as
∆Wij = ηδiXj

with δi = g′(hi)(yi − oi).
We thus have an update rule for the weights from hidden to output layer. For

the weight connecting the input layer to the hidden layer we can play the same

4Note the difference between j which a given number and j′ which is a sum variable. To
do the differentiation it is best to write the sum out. For instance, we like to calculate
d(
P

j′ bj′aj′ )/db2, we have d
P

j′ bj′aj′/db2 = d(a1b1 + a2b2 + . . .)/db2 = a2. Or more formally,

da.b/dbj = d(
P

j′ bj′aj′ )/dbj =
P

j′ δj,j′aj′ = aj . In our case d
dWij

(
P

j′ Wij′Xj′ ) = Xj .
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trick, although the maths is a bit more tedious oi = g(
∑

j Wijg[
∑

k wjkxk]):

∆wjk = −η
dE

dwjk
= −η

∂E

∂Xj

∂Xj

∂wjk

= η
∑

i

(yi − oi)g′(hi)Wij g′(hj)xk

= η
∑

i

δiWijg
′(hj)xk

= ηδjxk

with the back-propagated error term defined as δj = g′(hj)
∑

i Wijδi = g′(hj)(WT~δ)j .
This completes the back-propagation rule.

In a computer program applying the back-propagation would involve the follow-
ing steps:

• Give inputs xk to the network

• calculate the output and the error

• back-propagate the error: i.e. calculate δi and δj .

• calculate ∆W , ∆w and the new weights

We have to repeat this procedure for all our patterns, and often many times until
the error E is small. In practice we might stop when E no longer changes, because
it can happen that the learning will not converge to the correct solution.

5.3 Comments

The back-propagation algorithm and its many variants are widely used to solve
all types of problems: hand-writing recognition, credit rating, language learning
are but a few. In a way the back-propagation is nothing but a fitting algorithm.
It slowly adjusts the network until the input-output mapping matches the desired
function. It has the nice property that it generalizes, even before unseen data will
get a decent response. But like most fitting algorithms we encounter the following
problems.

Convergence speed (how many trials to learn)

We want the error minimization to run quickly (few iterations), yet accurate. To
prevent overshooting take a low enough learning rate. In simplest terms this is a
trade-off between a small and large learning rate, but more advanced techniques
exist, for instance one can add a ’momentum’ term. This means that the algorithm
remembers the direction of descent. This prevents ’swagging’ around in the valley
of optimality.

Local minima

The learning can get stuck in local minima, in that case the error remains high.
I.e. convergence is not guaranteed! Whether this happens will depend on the initial
conditions we have chosen for the weights. So if training fails, one should reset to
other random initial weights and start again. Another option is to add some noise.
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Figure 11: Over-fitting: Left: The stars are the data points. Although the dashed
line might fit the data better, it is over-fitted. It is likely to perform worse on new
data. Instead the solid line is a more reasonable model. Right: When you over-fit,
the error on the training data decreases, but the error on new data increases. Ideally
both errors are minimal.

Over-fitting

In most applications one is not simply trying to make a XOR network, but rather
one is just given a dataset and the network’s task is to give correct responses to
new data by extracting rules and regularities from the data. Suppose the network
has learned perfectly and after training zero error on any of data. This is good,
however, how well does the network work for new data? To know this, one often
trains the network with only half of the available data and tests the network with the
remainder of the data after training. This testing with novel data is called validation
of the model. When we use more and more weights and units and train for longer
time, the network will describe the training data better and better. But the error
on unseen data will likely increase! The generalization performance deteriorates,
Fig. 11.

One trick is to add a weight decay term, this punishes extreme weights

E =
1
2

∑

i

(yi − oi)2 + α
∑

i,j

w2
ij

With the α term E becomes a mix of two terms. Learning causes the network to
go towards a solution in which both the error and the weights are small. Note, that
it is very unlikely that E will reach zero in this case.

This cost function prevents that output is generated by sensitive cancellation of
large positive and negative weights, as a result the fitted function becomes smoother.
More modern Bayesian techniques can also prevent such problems using a more
fundamental approach.

Curse of dimensionality

As the number of inputs increases, the network becomes harder to train. It needs
exponentially more data. The space grows very quickly. In high-dimensional space
the samples are very sparse and lie far apart. This is a fundamental problem which
is very hard to solve.

5.4 Properties of the hidden layer

The hidden layer can reveal hidden structure in the data. Suppose we create a
network with limited number of hidden nodes. E.g. 100 input, 10 hidden, 100
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output nodes. Now train the network such that output reproduces the input, for
instance a small image, as good as possible. Because the hidden layer is smaller
than the output and input, it will not do a perfect job. But to minimize the
error, the units need to create independent representations, each representing some
feature of the data. In other words the hidden layer finds an efficient representation
of the data. Also technologically this has applications, after all the hidden layer
compresses the information from 100 nodes into 10 nodes. One uses this to do image
compression.

5.5 Biology?

Finally, it is good to note that it is not at all clear that the brain implements back-
propagation, there is no evidence in favour of it nor against it. The presence of an
error signal and the implementation of the back-propagation phase are problematic.
Despite its questionable biological relevance the back-propagation is powerful algo-
rithm, which has many applications. In recent years a couple of smarter algorithms
have been developed. For engineers who are more interested in solving a task rather
than model biology, those are usually preferable (see LFD and PMR courses).

5.6 Matlab notes

Matlab has a special toolbox to simulate neural networks. Try help and nndtoc,
nntool on the command line. Programming the basic back-propagation algorithm
yourself is not that difficult, however. There is a script on the website.
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6 Filters

A coarse approximation of many sensory processes is to describe them as a linear
filter. In order to analyze filters, complex numbers and functions are a useful tool.

6.1 Intermezzo: Complex numbers

Complex numbers arise when we try to solve quadratic equations. They arise also
when dealing with periodic functions and Fourier transformation. Although com-
plex numbers have quite interesting mathematical properties, we just use them as
a tool here.

Consider the simple equation x2 = −1. There is no real value for x which solves
this, but we can define the solution. The solution is x = i =

√−1, the solution
is called imaginary. A complex number has in general a real and an imaginary
component: z = a + bi. The real part is denoted Re(z) or <(z), and the imaginary
part Im(z) or =(z), so that Im(2 − 3i) = −3. A lot of the rest follows from the
simple rule that i.i = −1.

Addition of two complex numbers goes components-wise: If z = x + iy and
c = a + bi, z + c = x + iy + a + bi = (x + a) + i(y + b). The multiplication of
two complex numbers uses that i.i = −1. If z = x + iy and c = a + bi, zc =
ax + aiy + bxi + byi2 = (ax− by) + i(ay + bx). For instance, z = 1 + 2i, c = 4− 3i,
we have z + c = 5− i, z.c = 10 + 5i.

Figure 12: Complex plane. Left: representing the complex number p. Right: Using
polar representation the complex number is defined by its argument (angle) and
modulus (length).

Complex numbers can be drawn in the complex plane. The real part of a complex
number is the x-coordinate, and the imaginary part the y-coordinate. The real and
imaginary component of a number act a bit like the two components to a vector.
To add two complex numbers, you just add them like you would add vectors.

Multiplication of two complex numbers also has a geometric representation in
the complex plane. We first represent the complex numbers with the so called
polar representation. (You can do the same for ordinary two dimensional vec-
tors). Instead of giving the real and imaginary component, we specify the length
|z| =

√
Re(z)2 + Im(z)2, called modulus, and the angle with the x-axis arg(z) =

atan(Im(z)/Re(z)), called argument.
Multiplication is simple in polar representation: The length of the product is

the product of the lengths, and the argument of the product is the sum of the
arguments. So if d = zc, then |d| = |z||c| and arg(d) = arg(z) + arg(c). Use this to
check that (2i)2 = −4.

The complex conjugate flips the sign of the imaginary component, it is de-
noted like z̄. If z = 1 + 2i, then z̄ = 1 − 2i. The modulus can be written as
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|z| = √
zz. (Check for yourself).

The division of two complex numbers should be done as follows: Suppose we
want to calculate z/c, we know that the outcome will be again a complex number,
say, d = z/c. Now multiply both numerator and denominator with c, and you get
d = zc/|c|2.

For example: 10+5i
1+2i = (1−2i)(10+5i)

(1−2i)(1+2i) = 10+10−20i+5i
1.1+2.2 = 4− 3i.

6.2 Complex functions

Most functions that you know (sin, sqrt, log) are defined for complex arguments as
well. Most rules of integration, differentiation and simplification remain valid when
the arguments are complex, for instance d

dt exp(iωt) = iω exp(iωt). Most useful is
the exponential function, exp(x+ iy) = exp(x)[cos(y)+ i sin(y)], while the real part
of the argument describes the exponential function, the imaginary component of
the argument describes a periodic function.

In particular when dealing with periodic functions, the complex exponential
function is particularly helpful in simplifying the calculations. But in the end after
the calculation is done we throw away the imaginary part and we only use the real
part of the function.

6.3 Temporal filters

In cognitive processing but also in data processing one often encounters filters.
Filters can be defined with a so called kernel, here labeled k. If the original signal
is f(t), the filtered signal f∗(t) will be

f∗(t) = f ∗ k =
∫ ∞

−∞
f(t′)k(t− t′)dt′

This operation is called the convolution of f with k, and is denoted with ∗; there
is no standard notation for the filtered version of a function, here we use f∗. Note
that, the filtering operation is linear (see also Chap.2), because (αf)∗ = αf∗ and
(f + g)∗ = f∗ + g∗. Furthermore, note that f ∗ k = k ∗ f , so that it is in theory
unimportant what we call the kernel.

If only the output of the filter is known, the kernel can be retrieved by taking
the input f a sharp, single peaked function. This is called a delta function δ(x). It
is normalized such that

∫
δ(x) = 1. Its most important property is that

∫∞
−∞ δ(x−

x0)g(x)dx = g(x0). So when we take f(t) = δ(t) the filtered version is f∗(t) = k(t),
in other words the filtered output is the kernel itself. The kernel is therefor also
called the impulse response. As an example, a hand-clap can be used to determine
all the echos in a room and can predict in principle the response to any kind of
sound in that room (assuming sound behaves linearly).

For temporal filters it is not unreasonable to assume that the filter only has
access to the past values of f . Those filters are called causal, and it means that
k(t < 0) = 0. A simple kernel is k(t) = 1

τ exp(−t/τ) if t > 0 and zero otherwise,
Fig. 13. Here τ is the timeconstant of the filter. The longer τ is, the more strong
filtering occurs.

6.4 Filtering periodic signals

The kernel of Fig. 13 implements a low pass filter. To show this we take the original
signal a periodic function, and study the output. If the filter is a low pass filter,
it should attenuate the low frequency signals less than the high frequency ones. In
Fig. 13 the response to a variety of inputs is shown.
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Figure 13: Left: the filter-kernel used. Middle left: the filter’s response when the
input is an impulse δ(t). Middle right: the response to two subsequent pulses.
Right: Response to half the signal.
Below: The effect of filter on a periodic signal with a low frequency, the original
signal is the largest, the filtered signal is slightly weakened and phase-shifted. Below
right: The effect of filter on a periodic signal with a high frequency, the filtered signal
is strongly weakened and more phase-shifted. (Note, the time scales left and right
are different).

The easiest way to analyze how the filter above acts on periodic (sinusoidal)
signals is to use complex numbers. The input signal is a periodic signal f(t) =
A exp(2πift), where f is the frequency of the signal, and A is its amplitude. The
filter output is

f∗(t) =
∫ ∞

−∞
A exp(2πift′)k(t− t′)dt′

=
A

τ
exp(−t/τ)

∫ t

−∞
exp(2πift′ + t′/τ)dt′

=
A

1 + 2πifτ
exp(2πift)

=
1

1 + 2πifτ
f(t) (4)

The outcome says that the output is equal to the input times a complex number.
The ratio between the output amplitude and the input amplitude can be calculated
as follows: |f(t)|2 = A2 exp(2πift)exp(2πift) = A2, while,

|f∗(t)|2 =
(

1− 2πifτ

1 + (2πfτ)2

) (
1− 2πifτ

1 + (2πfτ)2

)
|f(t)|2

=
(1− 2πifτ)(1 + 2πifτ)

[1 + (2πfτ)2]2
|f(t)|2

So |f∗(t)|
|f(t)| = 1√

1+(2πfτ)2
. As the frequency increases the output amplitude dimin-

ishes, as a low-pass filter is supposed to do. Apart from the changing amplitude
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ratio, the output signal changes it phase w.r.t. the input signal, Fig. 13.
In the end we only care about the real part of the solution. In principle we could

have done the same calculation only using real functions, f = A sin(2πft), but the
work would have been more involved.

6.5 Spatial filters

In image processing and both human and computer vision, we can define spatial
filters. Quite analogous to a temporal convolution we have a two dimensional con-
volution. The kernel of these spatial filters can be written as matrices. The input
image is given as a matrix I with pixel intesities, the output image will be

I∗i,j =
∑

k

∑

l

Ii−k,j−lKk,l

A kernel such as K =




0 1 0
1 4 1
0 1 0


 will blur the image. The kernels do not need

to be square. When dealing with a continuous, non-pixelated image the sums are
trivially replaced by integrals.

(In Matlab and in GIMP you can define your own convolution matrix and filter
images).

Relevance for cognition

Models of the processing in the visual cortex often include filters both in the
spatial and the temporal domain. For instance, flicker frequencies higher
than 50Hz are usually not visible by humans, meaning that the temporal
cut-off is around 50Hz.

Spatially, many neurons in the primary visual cortex act as edge detec-
tors and can be well described with a linear filter (in higher visual ar-
eas this breaks down). A (vertical) edge detector has a kernel such as

K =




1 −1
2 −2
1 −1


.

There is evidence that different spatial frequencies are processed in parallel
pathways.

In the auditory domain temporal filters are prevalent as well, as each neuron
in the auditory cortex processes a limited frequency band.

6.6 Matlab notes

Given the enormous importance of filters in engineering, Matlab is well equipped
to filter signals. The following list of commands was used to produce Fig. 13.

k=exp(-[0:0.1:5]); % exponential kernel

k=k/sum(k); % normalize such that sum(k)=1

f=0.1;s= cos(6.28*f*[0:0.1:100]) % define a low frequency signal ’s’

c=conv(k,s); % the convolution command

plot(c(1:500))

f=1;s= cos(6.28*f*[0:0.1:100]); % repeat for a high frequency signal

c=conv(k,s);

plot(c)

In advanced applications convolutions are almost always done in Fourier space,
as there the convolution becomes a multiplication. This procedure, including time
to do the Fourier transform and the inverse transform, is much quicker.
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6.7 Exercises

1. Check that | exp(x + iy)| = exp(x).

2. Extract the real part from f(t) = exp(2πift), and from g(t) = 1
1+2πifτ exp(2πift).

3. Given the function f = 3 if 0 < t < 4 and zero otherwise. Take the kernel
k(t) = 1/2 if −1 < t < 1 and zero otherwise, and filter f with it (either by
hand or using Matlab). Sketch the result.
To get a first intuition, calculate f∗(t) when t is either much less or much
larger than 0. Next, try t = 2.

4. As above, but now with k(t) = −1/2 if −1 < t < 0, k(t) = 1/2 if 0 < t < 1.

5. Suppose we have a spatial filter with kernel K =
( −1 −2 −1

1 2 1

)
. The in-

put is zero everywhere except for a little patch where I =
(

I11 I12 I13

I21 I22 I23

)
.

Which normalized I (
∑

I2
ij = 1) will give the maximal output of the filter?

Note, it helps to think of both kernel and input as one-dimensional vectors.

6. How would you create a detector for longer lines, for lines with different angles?
If you have GIMP, try these kernels on a sample image.
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7 Differential equations

In previous chapters we concentrated on engineering and training networks to do a
certain task. Here we approach cognitive computation differently, namely we ask
how a system will behave given the basic building blocks. For instance, we might
wonder how a network of biological neurons will react to a certain input. Many
physical and biological systems are described in terms of differential equations. A
differential equation is an equation which gives an expression for the derivative of a
function. Here we mainly consider differential equations in time (again denoted t),
although in general the derivatives can be w.r.t. any variable. The theory behind
differential equations is quite involved, we just focus on a few cases without being
too bothered whether solutions exist and if they are unique. Examples we will
discuss here are an RC circuit, chemical reactions, rate neurons, and oscillations.

One of the simplest differential equations is the following one. Suppose we take
a sausage roll with temperature T0 into a room where the temperature is Tr. We are
interested in the temperature over time T (t). The energy flux will be proportional to
the temperature difference between the room and the sausage roll. The temperate
will therefor obey

dT (t)
dt

= −c(T (t)− Tr)

where c is some cooling constant determined by insulation, the units should ’per
second’ (why?). This equation has the solution T (t) = Tr + (T0 − Tr) exp(−ct).
It is good that this solution is correct by substitution in the differential equation.
Furthermore, you should check that T (0) = T0 and T (∞) = Tr.

We just went through the basic steps in studying a physical system using dif-
ferential equations: 1) Write down the differential equation(s) that describe or ap-
proximate the physical system, 2) Solve the equation, 3) Add the initial conditions
to solve any constants in the solution.

7.1 RC circuit

A very similar differential equation results from a simple electronic circuit, a so
called RC circuit. The RC circuit is not only of interest for engineers but it is also
the basis for most neuron models.
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Figure 14: Left: RC circuit. The injected current is Iinj , the total capacitance is
C and R is the total membrane resistance. Right: Response of the voltage to an
impulse in the stimulus current.

Kirchhoff’s law tells us that the sum of the currents at any point in the circuit
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should be zero. What are the different contributions to the current? The current
through the resistor is given by Ohm’s law5

Iresistor =
∆V

R
=

V − Vrest

R

Similarly, there is a current associated to the capacitance. This current flows for
instance when initially the voltage across the capacitor is zero, but suddenly a
voltage is applied across it. Like a battery, a current flows only until the capacitor
is charged up (or discharged). The current into the capacitor is

Icap = C
dV

dt

It is important to note that no current flows when the voltage across the capacitor
does not change over time.

Understanding electrical current: In order to get intuition for these equations, you
can make the analogy with water. The height of the water corresponds to the voltage.
The current to the amount of water flowing per second. A resistor in this language is
a narrow tube that hinders the water flow. A capacity is a reservoir. The amount of
current needed to make the water rise in a reservoir, will depend on its capacity.

Finally, we assume an external current is injected. As stated the sum of the
currents should be zero. We have to fix the signs of the currents: we define currents
flowing away from the point to be negative. Now we have −Iresistor − Icap + Iext =
0. The circuit diagram thus leads to the following differential equation for the
membrane voltage.

C
dV (t)

dt
= − 1

R
[V (t)− Vrest] + Iinj(t)

In other words, the membrane voltage is given by a first order differential equation.
It is always a good idea to study the steady state solutions of differential equations
first. This means that we assume Iinj to be constant and dV/dt = 0. We find for
the membrane voltage V∞ = Vrest + RIinj .

How rapidly is this steady state approached? If the voltage at t=0 is V0, one
finds by substitution that V (t) = V∞+[V0−V∞] exp(−t/τ). So, the voltage settles
exponentially. The product τ = RC is the time constant of the circuit. The time-
constant determines how fast the membrane voltage reacts to fluctuations in the
input current.

The equation describes actually the low-pass filter we have seen above, the
voltage is a low-pass filtered version of the input current. Again this is easy to
show using complex functions. Without going into the details we state that when
Iinj = I0 exp(2πift), the solution is V (t) = 1

1+2πifτ RI(t) plus terms from the initial
conditions. This can be compared to Eq. 4. The rate will follow the input with some
delay. Like above, the amplitude of the voltage gets smaller at higher frequencies
as 1/

√
1 + (2πfτ)2, i.e. the signal is low-pass filtered.

7.2 Rate model of a neuron

In neural and cognitive modelling one commonly models the neuron with its firing
rate. Earlier we described the firing rate of a neuron r(t) given some input as

5Ohm’s law says that current and voltage are linearly related. As soon as the linearity is lost,
Ohm’s law is broken. This happens for instance in diodes or neon tubes, in that case we have a
non-Ohmic conductance.
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r(t) = g(input(t)). However, in biology the neuron will take time to establish its
response. A common way to describe this is

τ
dr(t)
dt

= −r(t) + g(input(t)) (5)

where g(input) is a rectifying function, such as max(input, 0) or a sigmoid such as
1/(1 + exp(−x)). The τ describes the time constant of the neuron (a few ms).

If the input is constant, the solution to Eq. 5 is r(t) = c exp(−t/τ) + g(input).
One can check this by substituting the solution in the differential equation. In
words, the activity of the node adjusts to the new input. However, like the RC
circuit the change is not instantaneous but has some sluggishness.

This more biological neuron model will not improve the performance of the
perceptron or the back-propagation network, but it can be used to create networks
that oscillate and for instance describe motor circuit responsible for the movement
of limbs.6

7.3 Harmonic oscillator

Another commonly encountered example of a differential equation is a harmonic
oscillator. Suppose we have a mass connected to a spring. The force of the spring is
F = −Kx, where K is Hooke’s spring constant and x is the position. The minus sign
occurs moving x to the left will cause a force to the right. Because F = ma = md2x

dt2 ,
we end up with

m
d2x

dt2
= −Kx (6)

Its solutions are periodic functions, x(t) = A cos(ωt)+B sin(ωt), where ω =
√

K/m.
A very similar differential equation can be derived from a pendulum with small
amplitude.

Eq. (6) can also be written as two 1st order equations by introducing the variable
v for speed

v(t) =
dx(t)

dt

m
dv(t)
dt

= −Kx

This is a general trick, any higher order derivative can be replaced with first
order derivatives, at the cost of introducing extra variables. The number of 1st
order equations thus obtained is called the order of the differential equation.

7.4 Chemical reaction

Also chemical reactions can be described with differential equations. This is for
instance useful if we want to build low-level models of neurons. Suppose we have
two chemicals A and B. We denote their concentration with [A] and [B]. The
reaction from A to B occurs with a reaction rate kab and the reverse reaction with
a rate kba. These reactions can be written as

d[A]
dt

= −kab[A] + kba[B] (7)

d[B]
dt

= −kba[B] + kab[A]

6The spiking behavior of neurons, as shown in Fig. 5 (middle), can not be described by an RC
circuit. It is described by the so-called Hodgkin-Huxley equations. These equations are non-linear
and have 4 dimensions. The has no analytical solution, but it can be solved numerically. See
[van Rossum, ] for more details.
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The first equation describes that the rate of change in A is caused by two pro-
cesses: −kab[A] describes A being lost because it is converted into B, whereas kba[B]
describes new A being produced from B.

We have here a simple two-dimensional differential equation. We can easily solve
it by introducing two new variables Σ(t) = [A](t) + [B](t) and ∆(t) = kab[A](t) −
kba[B](t). Now it is easy to see that dΣ(t)/dt = d[A]/dt + d[B]/dt = 0, that is, Σ
is constant. This reflects that no matter is lost in the reactions. The remaining
equation for ∆ is simple (try). By this substitution we have reduced the two-
dimensional equation to a one-dimensional one. We could have done this already
at the beginning: because [A] + [B] = const, we can eliminate [B] in favor of [A]
and the constant, creating a one-dimensional equation. (try this as well)

7.5 Numerical solution

Solving differential equations analytically is often impossible. But solving differen-
tial equations numerically can be tricky as well, in particular when they are non-
linear and involve many variables. In practice one can resort to numerical standard
routines. Here we show how to use the Euler method. The Euler method is the
simplest way of integrating differential equations. Suppose we have a diifrerential
equation

df(t)
dt

= g(f(t), t)

where f(t) and g(f(t), t) are arbitrary functions. For instance, g can describe the
combination of the drive and the decay of the system, see Eq. 5. It is important
to realize that a differential equation has often a whole set of solutions. It is neces-
sary to know the starting values; the initial conditions determine the value of the
functions at t = 0.

When we integrate the equation we want to know the value in future time, given
the value now. According to the definition of the derivative

1
δt

[f(t + δt)− f(t)] = g(f(t), t)

or f(t + δt) = f(t) + δt g(f(t), t). This is directly implementable in Matlab and
would look something like this

f= 2 % a given initial value of f
for time=0:dt:endtime
f+= dt*g
end

The δt should be a small number such that f only changes little per time-step.
In practice the Euler method is so easy that I find it worthwhile, but is not very

efficient and can be unstable. One can decrease or increase the step size to see if the
solution remains the same. Alternatively, you can use Matlab’s own routines, which
often adapt the time-step so that you get a quick and accurate solution. There is a
whole set of routines called ode, such as ode45.

7.6 Exercises

1. Write Eqs. (7) as a matrix equation. Hereto introduce a vector s = ([A], [B]),
and write d

dts = M.s. Calculate the eigenvalues and eigenvectors of M . Sup-
pose a certain s1 is an eigenvector of the M matrix, what is the differential
equation for s1? Interpret your results.
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2. Consider the differential equation: b2 d2f(x)
dx2 = −f(x). Plug in f(x) = A exp(Bx).

For which values of A and B is this a solution? Write the solution as a periodic
function. Check your solution by filling this into the differential equation.

42



8 Stability and Phase plane analysis

In this chapter we study how networks of neurons behave that are described with
differential equations. In doing so we come across a potential implementation of
working memory.

8.1 Single neuron
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Figure 15: Left: A single neuron with a recurrent connection with strength w.
Middle: rate as a function of the input, and the line r = in/w. The only solution is
where the curves intersect. Right: For stronger w there are multiple solutions, the
middle one is unstable, the two outer ones are stable.

Let’s start simple. Suppose we have just a single neuron and we do not care
about its dynamics, i.e. we do not care about its differential equation. The neuron
does not receive any external input, but it does receive recurrent input with strength
w, Fig. 15 left. The rate of neuron for a given input is here modelled as r(in) =
1/(1 + exp(−in + 5/2) . The recurrent input is given by in(r) = wr, so that
we need to find values for r that satisfy r = 1/(1 + exp(−wr + 5/2). This is
impossible to solve analytically. We can solve this equation graphically by plotting
both r(in) = 1/(1 + exp(−in + 5/2) and r(in) = in/w in one graph, Fig. 15.

Depending on the value w we can have one or two stable points. When w is
small (or absent) the rate is just small as well. When w is large enough, we have
two stable points, one with low activity and one with high activity, in which the
feedback keeps the neuron going. We have basically a flip-flop memory! Which state
the neuron will reach depends on the initial conditions. Once the neuron is in one
state, it will stay there, until we disturb it with external input. This ’network’ acts
as a single bit of working memory. (Working memory is the typ of memory used to
keep items briefly in store. In contrast to long term memory which is thought to
be implemented in the synaptic weights, working memory is thought to be activity
based).

When w is even larger, the only fixed point is near r = 1. You can see this by
imagining an even shallower line in Fig. 15.

8.2 Damped spring

How do we analyse a complicated system of differential equations? Using a phase
plane we can sometimes get a better insight. Consider again the mass with the
spring connected to it. We add a damping term which describes the effect of friction.
Its sign is negative to express that the force is opposite the direction of the velocity.

m
d2x(t)

dt2
= −Kx(t)− c

dx(t)
dt
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Figure 16: The oscillations in a spring and mass system.
Two top panels: The position and velocity versus time. Below that: the phase
plane. Upper three plots: undamped case (c = 0).
Lower three plots: damped case (c > 0). The initial conditions were x(0) = 1,
v(0) = 0.

We rewrite this as a system of two first order differential equations, by introducing
the velocity as

dx(t)
dt

= v(t)

m
dv(t)
dt

= −Kx(t)− cv(t)

In phase plane we plot one state variable against another. Here we plot the
position variable against the velocity, Fig. 16. Without damping the position and
velocity are both sinusoidal, but out of phase. In phase space they run around in
an ellipse.

When the damping is present, the oscillations die out. The final velocity and
position are both zero in that case. We call these values of position and velocity
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(0, 0) a stable fixed point of the dynamics. No matter how strongly we perturb
it, eventually this system will end up in the stable fixed point.

8.3 Stability analysis

The definition for a fixed point is that at the fixed point the temporal derivatives are
zero. In the above the fixed point was stable. Not all fixed points are stable. Here
we look at a method to determine whether a fixed point is stable or not. Consider
two recurrently connected neurons: u1 À u2

τ
du1

dt
= −u1 + [w12u2 + in1]+

τ
du2

dt
= −u2 + [w21u1 + in2]+ (8)

where [x]+ is a rectification with [x]+ = x if x > 0 and [x]+ = 0 otherwise. This
describes two neurons that provide input to each other. If w12 > 0 (w12 < 0) then
neuron 2 has an excitatory (inhibitory) influence on neuron 1. Apart from that they
receive external input (in1, in2) which is assumed to be constant.

Let’s assume (to be confirmed post hoc) that w21u2 + in1 and w12u1 + in2 are
much larger than 0, so that we can ignore the rectification. In that case we have

τ
du
dt

=
( −1 w12

w21 −1

)
u(t) + in

= W.u(t) + in

Let’s find the fixed points, that is the u for which τ du
dt = 0, we can solve this directly

and write the fixed point as ufp, with ufp = −W−1.in. For convinience we set the
input equal to in = (1, 1). In Fig. 17 the resulting fixed points are right in the
middle of the plot (indicated with a circle on the left and a cross on the right).

Figure 17: Stability of two connected nodes. On the left the weights are w12 =
w21 = −4/5. There is a stable fixed point at (0.59, 0.59). The eigenvalues of the
stability matrix are -1/5 and -4/5.
Right: stronger mutual inhibition (w12 = w21 = −2). Now the fixed point at
(1/3, 1/3) is unstable. The eigenvalues are 1 and -3.

Next, we perform a stability analysis to see if the fixed point is stable. To this
end we look at what happens if we perturb the system away from the fixed point,
i.e. u = ufp + δu. Now τ du

dt = W.(ufp + δu) + in = W.δu, where δu is a small
vector. The only thing we need to know if such a perturbation grows or shrinks

45



over time. An easy way is to perturb in the direction of the eigenvectors W . An
eigenvector of W will behave as τ dsi

dt = λisi, and the perturbation will therefore
develop as si(t) = c. exp(λit/τ). The sign of λi will determine whether the system
runs away from the fixed point or returns to it: if λ < 0 than the perturbation will
die away and the system will return to the fixed point, if λ > 0 the pertubation will
grow. We can now distinguish a few possibilities.

• λ1,2 < 0. The dynamics are stable, the system converges to fixed point. This
is illustrated in Fig. 17 left. The figure illustrates the system’s evolution. We
simulated Eq.8, and followed the system over time. Different sets of the initial
conditions were taken, all along the edges of the graph.

• λ1 > 0, λ2 < 0. Saddle point. Although the dynamics are stable in one
direction, in the other direction it is unstable. Therefore the fixed point as a
whole is unstable. This is illustrated in Fig. 17 right. Along the diagonal the
dynamics moves towards the fixed point ( 1

3 , 1
3 ), but then bends off towards

to (0, in2) or (in1, 0). Once it hits the x-axis or the y-axis, the rectification
that we ignored earlier kicks in. Without the rectification the activity would
continue to grow to (±∞,∓∞). The intuition is that compared to the previous
case, because the inhibition is stronger, the nodes strongly inhibit each other
and there can only be one winner.

• λ1,2 > 0. Dynamics are unstable. This means that a minuscule fluctuation
will drive the solution further and further from the equilibrium. Like in the
previous case, the solution will either grow to infinity or till the linear approx-
imation breaks down.

• If the eigenvalues are complex the system will oscillate. Remember: ex+iy =
ex[cos(y) + i sin(y)]. Stability determined by the real part of the eigenvalue
Re(λ). When the real part is < 0 the oscillations die out, otherwise they get
stronger over time. The damped spring system, Fig. 16 is an example of such
a system.

The above technique also can be applied to the case when the equations are non-
linear. In that case the fixed points usually have to be determined numerically,
but around the fixed point one can make a Taylor expansion, so that for small
perturbations τ du

dt ≈ W.δu and one can study the eigenvalues of W again.7

In Fig. 17 left, the system will always go to the same fixed point. The basin of
attraction in this case encompasses all possible initial conditions. In Fig. 17 right
we have two basins of attraction, starting above the line in1 = in2 the system will
go to the upper left fixed point, starting below the line the system will go to the
lower right fixed point,

8.4 Chaotic dynamics

If we connect a decent number of nodes to each other with random weights, we can
get chaotic dynamics. If a system is chaotic it will show usually wildly fluctuating
dynamics. The system is still deterministic, but it is nevertheless very hard to
predict its course. The reason is that small perturbations in the initial conditions
can lead to very different outcomes and trajectories (The butterfly in China, that
causes rain in Scotland). This contrasts with the non-chaotic case, where small
perturbations in the cause small deviations in the final outcome. On the website
there is a script which allows you to play with a chaotic system.

7The other two fixed points in the corners of Fig. 17 right can be found using this technique.
The Taylor expansion of the transfer function we used is unfortunately ill-defined near x = 0.
Replacing it with g(x) = log(1 + exp(10x))/10, which is very similar, will work better.
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There has been much speculation, but not much evidence for possible roles of
chaotic dynamics in the brain.

8.5 Exercises

1. a) Check by graphical construction that in Fig. 15, there is only one solution
when w becomes very large.
b) How would the analysis of section 8.1 change if r(in) = 1/(1 + exp(−in)?

2. Another way look at section 8.1 is to analyze the differential equation

τ
dr(t)
dt

= −r(t) + g(wr(t))

Without doing the actual calculation, 1) write down the equation for the fixed
point, 2) indicate how stability of a given fixed point can be researched.
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9 Application: Hopfield network

Figure 18: Hopfield net with 8 nodes. The arrows denote the (symmetric) weights
between them.

We consider again a network of neurons. Importantly, we assume that the
connections between the nodes are symmetric, that is, the weight from i to j is the
same as the weight from j to i, i.e. wij = wji. In this case one can show that
the dynamics is simple: the system always goes to one of its equilibrium states and
stays there.

This type of network is called a Hopfield network and it is an influential memory
model. The Hopfield network can store multiple binary patterns with a simple
learning rule. This is called an auto-associative memory: Presenting a partial
stimulus leads to a recall of the full memory, see Fig. 19. Auto-associative memories
are very different from computer memory (a bit like Google ...).

9.1 Single memory

Suppose we have n nodes in the network; each pattern is given by a n-dimensional
vector pµ with binary entries (±1), where µ labels the pattern. To see how the
retrieval of the memory pattern works, suppose first just a single pattern is stored.
For a single pattern the weights should be set wij = pµ

i pµ
j . The updating of the

network should be done asynchronously. That is, each time-step pick a random
node and update it according to si(t + 1) = g(wijsj(t)), where g(x) = sign(x). We
do this until the state of the network no longer changes.

Suppose just one node si is incorrect, all the other nodes have si = pi. When we
update the incorrect node we have si(t + 1) = sign(

∑
j wijpj) = sign(

∑
j pip

2
j ) =

sign(Npi) = pi, i.e. si is recalled perfectly. This was of course a simple task, but is
not hard to see that the memory will be recalled even when up to half of the other
bits is wrong.

If more than half of the bits are wrong, the system will go to the state −p. By
learning p, the network automatically learn these flipped state as well.

9.2 Energy minimization

The network will always settle in a stable state. The network will evolve to a
minimum of the following energy-function

E = −1
2

n∑

i,j

wijsisj

To prove this, suppose we update si. It’s new value is si(t + 1) = sign(
∑

j wijsj).
If si(t + 1) = si(t), the energy is the same, else si(t + 1) = −si(t) and

∆E = −1
2

∑

j

wijsi(t + 1)sj(t) +
1
2

∑

j

wijsi(t)sj(t) = −si(t + 1)
∑

j

wijsj(t) < 0
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The last inequality holds because si(t + 1) = sign(
∑

j wijsj). Hence energy always
decreases or stays, it never goes up. In other words, the network has a stable fixed
point. This fixed point corresponds to the memory state.
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Figure 19:
Left: Whenever the network starts in a state close enough to an attractor, it will
’fall in the hole’ and reach the attractor state.
Middle: Multiple attractor are present in the network, each with their own basin of
attraction. Each corresponds to a different memory.
Right: Pattern completion in a Hopfield network. The network is trained on the
rightmost (binary) images. Each time the leftmost (distorted) input is given, the
network evolves via the intermediate state to the stored state. These different image
can all be stored in the same network. From Hertz.

9.3 Storing many patterns

When multiple memories are to be stored, the weight between node i and j should
be set according to the rule wij =

∑
µ pµ

i pµ
j . This means we just sum the weights

over all patterns. It also helps to force wii = 0 (hack). Each stored pattern will cor-
respond to a stable fixed point, or attractor state. We can store multiple memories
in the net as is shown in Fig. 19 right.

However, the storage capacity of the network is not unlimited. As we increase
number of stored patterns, the memories states becomes unstable. Stable mixed
states appear. At the critical amount of storage, performance decreases suddenly.
The network will still equilibrate, but it will end up in spurious attractor states
rather than in the memory states it was suppose to find. The numbers of patterns
we can store is proportional to the number of nodes, nstored = αn where α is
called the capacity. Simulation and statistical physics gives αcn = 0.138n. Hence a
network with 100 nodes can store about 14 patterns.

9.4 Biology and Hopfield nets?

There is no direct evidence for Hopfield like attractors in the brain. For instance,
object recognition has not been observed as reaching an attractor. On the other
hand, working memory states exists, which are likely due to an attractor network.
The assumptions we made need further investigation
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• Are connections in the brain symmetric? This is not well known, but definitely
not all connections are symmetric on a cell to cell basis. However, some
asymmetry does not destroy attractor states.

• Learning is one-shot and in order for the network to work, learning should
stop after the to be learned patterns have been presented, otherwise network
will start to overflow. One can get around this restriction by implementing
weight decay in which old memories are slowly forgotten.

9.5 Exercises
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Figure 20: See exercise.

1. Think of examples of small networks where the dynamics does not settle down
because 1) update is synchronous, or 2) weights are not symmetric.

2. Mini Hopfield network. Our first network is shown in Fig. 20A. Let us suppose
that the neurons start off with the values N1 = 1, N2 = 1, N3 = 0. The
triad ’110’ of values describes the network’s state. A neuron becomes active
(1) if the weighted sum of its inputs from the other neurons is larger than
the threshold values, otherwise it will be inactive (0). [This is completely
equivalent to the case where the inactive state is -1]. The weights are the
values on the lines joining the neurons and thresholds are the values within
the circles. Look at N1 first. The weighted sum of its inputs from N2 and N3
is 0.5 x 1 + 0.2 x 0 = -0.5. This is not bigger than the threshold of -0.1 so
N1 switches off and the network moves into the state ’010’. Starting from the
original network conditions, what happens to N2 and N3?
The Hopfield network neurons update asynchronously, i.e. not all at the same
time. Each of the neurons has an equal chance of being updated in any given
time interval. If it is updated, then a state transition can occurs. Draw a
state transition diagram showing all the possible states of the network (8 in
this case, 2 possible values for each of the three neurons) linked with arrows
depicting the transitions that can occur to take one state into another. This
is shown in Fig. 20 B, for the ’100’ state. In two-thirds of the cases, N1 is
above threshold and the input to N2 is below threshold: in neither case do
they change state. In the other case, when N3 tries to fire, its input is above
threshold so it changes state from 0 to 1. Complete the state diagram for this
network. What is special about the state 011?

3. Draw the state diagram for the network in Fig. 20C. What’s the obvious
difference between this state diagram and the previous one?
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