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1 Excitatory and inhibitory populations

We study the rate dynamics of two populations of neurons, an excitatory one group and an
inhibitory one group. The populations are recurrently connected. The firing rates ν are given by
the following differential equations:

τe
dνe

dt
= −νe + [Meeνe + Meiνi − γe]+

τi
dνi

dt
= −νi + [Miiνi + Mieνe − γi]+

With the symbol [x]+ we indicate rectification, i.e. [x]+ = x if x > 0 and [x]+ = 0 if x ≤ 0.
Because firing rates can never be negative, this seems a decent thing to do. The subscript e (i)
denote that the population is excitatory (inhibitory).

Here τe and τi are the time constants of the populations. The γ are the firing thresholds. Describe
briefly for yourself the meaning of the different terms in these equations.

The connection weights between the populations are given by the M ’s. Set Mee = 1.25, Mie = 1,
Mii = Mei = −1. Check that these signs of M make sense, namely connections from the excitatory
population should increase activity, while those from the inhibitory population should decrease
it. Furthermore set γe = −10Hz, γi = 10Hz. The negative threshold value for the excitatory
population causes it to be active even without input. Alternatively, we could have provided
external input to the excitatory population. Finally, set τe = 10ms; the value of τi we keep as a
variable.

In order to integrate these equation (i.e. follow the evolution in time), we use that df(t)
dt =

lim∆t→0
1

∆t [f(t + ∆t) − f(t)]. Therefore, the equation τ df(t)
dt = −f(t) + g(t) gives that the value

of f at the next time-step is f(t + ∆t) = (1 − ∆t
τ )f(t) + ∆t

τ g(t). This way we can step through
time. For a proper approximation one should have ∆t ¿ τ .

a) Implement the differential equations in Matlab. Plot the activity, that is, νe and νi as it
develops in time, for τi = 50.

We can analyze this system more formally by making a linear approximation around the fixed
point. Linear approximation means in this case that we stay away from the activity regime where
the rectification acts. The stability matrix is

N =

(
Mee−1

τe

Mei

τe
Mie

τi

Mii−1
τi

)

The eigenvalues of this matrix determine the stability of the network around the fixed point. The
Matlab function eig(N) gives the eigenvalues of a matrix N ; with real() and imag() the real
and imaginary parts of the eigenvalues can be extracted.

1



b) Explore the real and imaginary parts of the eigenvalues as a function of τi. There are four
different regimes. Try τi = 10, τi = 50, τi = 100, τi = 1000. For each value plot the
activities. If you have time you plot the real and imaginary parts versus τi.

c) Plot νi against νe in a phase plot. e.g. plot(ve array, vi array,’*’) for the above choices
of τi.


