UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS

FORMAL MODELLING IN COGNITIVE SCIENCE 1

Thursday 1 April 2004

00:00 to 00:00

Convener: H Thompson External Examiner: J Barnden

INSTRUCTIONS TO CANDIDATES

ANSWER A TOTAL OF THREE QUESTIONS as follows:

either QUESTION 1 or QUESTION 2 and either QUESTION 3 or QUESTION 4 and either QUESTION 5 or QUESTION 6.

The total of marks that can be obtained is 100.

1. Logic	[33 marks]
(a) What is a categorial syllogism?	[7 marks]
(b) Cite some evidence that many undergraduate subjects into solving them as a credulous task.	erpret the task of $[19 marks]$
(c) Might this explain why problems without valid classical le to be harder, especially for problems which are not ruled conclusions by Aristotle's two metalogical principles?	ogic are observed out from having [7 marks]

2. **Logic**

Was Wason right about his selection task?

[33 marks]

3. Mathematics for Neural and Connectionist Modelling
$$[33 marks]$$
Given a matrix $M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.(a) Calculate the eigenvalues and eigenvectors.(b) Sketch the eigenvectors. What does the matrix describe? Interpret the results. $[6 marks]$ (c) Calculate the determinant of the matrix. Is the matrix invertable? $[9 marks]$ (d) Solve $M.x = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$. What does the solution describe? $[12 marks]$

4. Mathematics for Neural and Connectionist Modelling [33 marks] Given the differential equation df(x)/dx = -2f(x) + 1.

(a) What is the solution to this equation? [7 marks]

[6 marks]

- (b) Given that f(0) = 1, what is now the solution?
- (c) Given $g(y) = 1/(1 + \exp -y)$ and $h(x) = x^2$. Calculate dg(h(x))/dx. [10 marks]
- (d) Where is the derivative dg(h(x))/dx zero? It is a maximum or a minimum? [10 marks]

5. Probability and Information Theory

[34 marks]

(a) Given two random variables X and Y with the following joint probability distribution f(x, y):

			x	
		1	2	3
	2	0.3	0.1	0
y	4	0.3	0	0
_	6	0.1	0.1	0.1

i.	Compute the marginal distributions for X and Y .	[8 marks]
ii.	Compute the conditional distribution $f(y x=1)$.	[5 marks]
iii.	Give an alternative way of computing $f(y x)$?	[5 marks]

- iv. Compute the Entropy of X.
- (b) State Chebyshev's theorem and explain its relevance. Also mention possible applications in cognitive science. [10 marks]

 A controlled language is defined as a subset of a natural language (e.g., English) with restricted grammar and vocabulary. Controlled languages are used to standardize text production, e.g., for technical documents that have to be translated into a large number of languages. Assume a controlled language that only contains nouns, verbs, and prepositions. This language has a vocabulary consisting of 85 nouns (N), 10 verbs (V), and 5 prepositions (P). (a) Compute the number of four-word sequences that are possible in this controlled language (word can be repeated). [5 metrolled language (word can be repeated). (b) Now assume the grammar of the language is also controlled. Only sentences with the following structures are allowed: N V N N N V P N Compute the number of sentences that are possible given that words cannot be repeated in a sentence. [8 metrolled in a sentence. (c) i. Assume that all words in the language are equally likely. Compute the probabilities P(N), P(V), and P(P). ii. Now assume a random variable X = {N, V, P} and the probabilities you computed in the previous question. What is the number of bits required on average to transmit a sequence of four values of this random variable? 	narks]
 Assume a controlled language that only contains nouns, verbs, and prepositions. This language has a vocabulary consisting of 85 nouns (N), 10 verbs (V), and 5 prepositions (P). (a) Compute the number of four-word sequences that are possible in this controlled language (word can be repeated). [5 metrolled language (word can be repeated). (b) Now assume the grammar of the language is also controlled. Only sentences with the following structures are allowed: N V N N N V P N Compute the number of sentences that are possible given that words cannot be repeated in a sentence. [8 metroposabilities P(N), P(V), and P(P). (c) i. Assume that all words in the language are equally likely. Compute the probabilities P(N), P(V), and P(P). ii. Now assume a random variable X = {N, V, P} and the probabilities you computed in the previous question. What is the number of bits required on average to transmit a sequence of four values of this random variable? 	
 (a) Compute the number of four-word sequences that are possible in this controlled language (word can be repeated). [5 mm] (b) Now assume the grammar of the language is also controlled. Only sentences with the following structures are allowed: N V N N N V P N Compute the number of sentences that are possible given that words cannot be repeated in a sentence. [8 mm] (c) i. Assume that all words in the language are equally likely. Compute the probabilities P(N), P(V), and P(P). ii. Now assume a random variable X = {N, V, P} and the probabilities you computed in the previous question. What is the number of bits required on average to transmit a sequence of four values of this random variable? 	
 (b) Now assume the grammar of the language is also controlled. Only sentences with the following structures are allowed: N V N N N V P N Compute the number of sentences that are possible given that words cannot be repeated in a sentence. (c) i. Assume that all words in the language are equally likely. Compute the probabilities P(N), P(V), and P(P). ii. Now assume a random variable X = {N, V, P} and the probabilities you computed in the previous question. What is the number of bits required on average to transmit a sequence of four values of this random variable? 	arks]
 N V N N N V P N Compute the number of sentences that are possible given that words cannot be repeated in a sentence. [8 me (c) i. Assume that all words in the language are equally likely. Compute the probabilities P(N), P(V), and P(P). [3 me ii. Now assume a random variable X = {N, V, P} and the probabilities you computed in the previous question. What is the number of bits required on average to transmit a sequence of four values of this random variable? 	
 Compute the number of sentences that are possible given that words cannot be repeated in a sentence. [8 metrics] (c) i. Assume that all words in the language are equally likely. Compute the probabilities P(N), P(V), and P(P). [3 metrics] ii. Now assume a random variable X = {N, V, P} and the probabilities you computed in the previous question. What is the number of bits required on average to transmit a sequence of four values of this random variable? 	
 (c) i. Assume that all words in the language are equally likely. Compute the probabilities P(N), P(V), and P(P). [3 more computed in the previous question. What is the number of bits required on average to transmit a sequence of four values of this random variable? 	arks]
ii. Now assume a random variable $X = \{N, V, P\}$ and the probabilities you computed in the previous question. What is the number of bits required on average to transmit a sequence of four values of this random variable?	arks]
(Assume that the values in the sequence are independent.) $[8 methat]$	arks]
(d) What is conditional entropy? Describe an application in the controlled language scenario. $[10 n]$	narks]