FMCS 1-Maths 06/07: Assignment 2

Mark van Rossum

14th February 2007

Rectangular filter

Given a filter kernel K with $K(t)=\frac{1}{T}$ if $0<t<T$, and $K(t)=0$ otherwise. T is a fixed parameter of the kernel. Convolution with this kernel acts as taking a running average. We research the convolution of periodic functions.
a) Convolve the kernel with the periodic signal $g(t)=\sin (2 \pi f t)$. Call the result $g^{*}(t)$.
b) Do a first order Taylor expansion of $g^{*}(t)$ w.r.t. T around $T=0$, i.e. this would a good approximation for $g^{*}(t)$ when $2 \pi f T \ll 1$. Explain the result.
c) For which values of T is $g^{*}(t)=0$ for all t ?
d) For a given f and T, g^{*} will have a maximum for $t=0$. Sketch the value of the maximum as a function of T for the case that $f=1$. Interpret your result.

