FMCS 1-Maths 06/07: Assignment 2

Mark van Rossum

14th February 2007

Rectangular filter

Given a filter kernel K with $K(t) = \frac{1}{T}$ if 0 < t < T, and K(t) = 0 otherwise. T is a fixed parameter of the kernel. Convolution with this kernel acts as taking a running average. We research the convolution of periodic functions.

a) Convolve the kernel with the periodic signal $g(t) = \sin(2\pi f t)$. Call the result $g^*(t)$.

b) Do a first order Taylor expansion of $g^*(t)$ w.r.t. T around T = 0, i.e. this would a good approximation for $g^*(t)$ when $2\pi fT \ll 1$. Explain the result.

c) For which values of T is $g^*(t) = 0$ for all t?

d) For a given f and T, g^* will have a maximum for t = 0. Sketch the value of the maximum as a function of T for the case that f = 1. Interpret your result.