
1

Today
See Russell and Norvig, chapters 4 & 5

• Local search and optimisation

• Constraint satisfaction problems (CSPs)

• CSP examples

• Backtracking search for CSPs

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

2

Iterative improvement algorithms
In many optimization problems, path is irrelevant;
the goal state itself is the solution.

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable.

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it.

Typically these algorithms run in constant space, and are suitable for online as
well as offline search.

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

3

Example: Travelling Salesperson Problem
Start with any complete tour, perform pairwise exchanges:

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

4

Example: n-queens
Put n queens on an n × n board with no two queens on the same
row, column, or diagonal.

Move a queen to reduce number of conflicts.

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

5

Hill-climbing (or gradient ascent/descent)
“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbour, a node

current←Make-Node(Initial-State[problem])

loop do

neighbour← a highest-valued successor of current

if Value[neighbour] < Value[current] then return State[current]

current← neighbour

end

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

6

Hill-climbing contd.
Problem: depending on initial state, can get stuck on local maxima.

value

states

global maximum

local maximum

In continuous spaces, problems with choosing step size, slow convergence.

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

7

Simulated annealing
Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency.

The name comes from the process used to harden metals and glass by heating
them to a high temperature, and then letting them cool slowly, to reach a low
energy crystalline state.

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

Simulated annealing 8

function Simulated-Annealing(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to “temperature”

local variables: current, a node

next, a node

T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])

for t← 1 to∞ do

T← schedule[t]

if T = 0 then return current

next← a randomly selected successor of current

∆E←Value[next] – Value[current]

if ∆E > 0 then current← next

else current← next only with probability e∆E/T

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

9

Properties of simulated annealing
In the inner loop, this picks a Random move:
– if it improves the state, it is accepted;
– if not, it is accepted with decreasing probability,

depending on how much worse the state is, and time elapsed.

It can be shown that, if T decreased slowly enough, then always reach best state.

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling;

now widely used in VLSI layout, airline scheduling, etc.

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

10

Constraint satisfaction problems (CSPs)
Standard search problem:

state is a “black box”—any old data structure
that supports goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

This is a simple example of a formal representation language.

Allows useful general-purpose algorithms with more power
than standard search algorithms

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

11

Example: Map-Colouring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

12

Map colouring as constraint problem
Colour the map with three colours so that no two adjacent states have the same
colour.

Variables WA, NT , Q, NSW , V , SA, T

Domains Di = {red, green, blue}
Constraints WA 6= NT, WA 6= SA, . . . (if the language allows this)

or
(WA,NT) ∈ {(red, green), (red, blue), (green, red), . . .}
(WA,Q) ∈ {(red, green), (red, blue), (green, red), . . .}
...

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

13

Example: Map-Coloring contd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions satisfy all constraints, e.g. {WA = red,NT = green, SA= blue, . . . }

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

14

Constraint graph
Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

15

Varieties of CSPs
Discrete variables

finite domains; size d ⇒ O(dn) complete assignments
♦ e.g., Boolean CSPs, incl. Boolean satisfiability

infinite domains (integers, strings, etc.)
♦ e.g., job scheduling, variables are start/end days for each job
♦ need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

♦ linear constraints solvable, nonlinear undecidable

Continuous variables
♦ e.g., start/end times for Hubble Telescope observations
♦ linear constraints solvable in poly time by LP methods

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

16

Varieties of constraints
Unary constraints involve a single variable,

e.g., SA 6= green

Binary constraints involve pairs of variables,
e.g., SA 6= WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green

often representable by a cost for each variable assignment
→ constrained optimization problems

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

17

Example: Cryptarithmetic

OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

Variables: ?
Domains: ?
Constraints: ?

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

18

Example: Cryptarithmetic

OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

Variables: F T U W R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints
alldiff(F, T, U,W,R, O), O + O = R + 10 · X1, . . .

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

19

Real-world CSPs
Assignment problems

e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

20

Standard search formulation (incremental)
Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far

• Initial state: the empty assignment, { }

• Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
⇒ fail if no legal assignments (not fixable!)

• Goal test: the current assignment is complete

– This is the same for all CSPs!
– Every solution appears at depth n with n variables: ⇒ use depth-first search
– Path is irrelevant, so can also use complete-state formulation
– b = (n − ℓ)d at depth ℓ, hence n!dn leaves!!!!

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

21

Backtracking search
Variable assignments are commutative, i.e.,

[WA= red then NT = green] same as [NT = green then WA= red]

Only need to consider assignments to a single variable at each node
⇒ b = d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

22

Backtracking search

function Backtracking-Search(csp) returns solution/failure

return Recursive-Backtracking([], csp)

function Recursive-Backtracking(assigned, csp) returns solution/failure

if assigned is complete then return assigned

var← Select-Unassigned-Variable(Variables[csp], assigned, csp)

for each value in Order-Domain-Values(var, assigned, csp) do

if value is consistent with assigned according to Constraints[csp] then

result←Recursive-Backtracking([var = value|assigned], csp)

if result 6= failure then return result

end

return failure

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

Backtracking example 23

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

Backtracking example 24

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

Backtracking example 25

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

Backtracking example 26

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

27

Summary
Local search:
– iterative improvement algorithms – hill climbing, simulated annealing

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node

Alan Smaill Fundamentals of Artificial Intelligence Oct 15, 2007

