Extreme Computing

Admin and Overview

Administration

Your Background

Overview

Big data

Performance

Clusters

Course Staff

$\frac{1}{3}$ ×Kenneth Heafield $\frac{2}{3}$ ×Volker Seeker

Currently 12 TAs/demonstrators/markers

Administration	Your Background	Overview	В
00000			

Performance

Website

http://www.inf.ed.ac.uk/teaching/courses/exc

Piazza

https://piazza.com/class/j7m5dr4ns4dta (Linked from website)

Mailing List

exc-students at inf.ed.ac.uk is populated when you enroll.

Administration	Your Background	Overview	Big data	Performan
00000				

Website

http://www.inf.ed.ac.uk/teaching/courses/exc

Piazza

https://piazza.com/class/j7m5dr4ns4dta (Linked from website)

Mailing List

exc-students at inf.ed.ac.uk is populated when you enroll.

 \implies Check website for announcements, especially first two weeks.

Administration	Your Background	Overview	Big data	Performance	Clusters
00000					

Assessment

25% Assignment 125% Assignment 250% Exam in May ☺ (December ☺ for visitors)

Don't start the assignments yet; they are being updated.

Administration	Your Background	Overview	Big data	Performance	Clusters	-
000000						5

Assessment

25% Assignment 1
25% Assignment 2
50% Exam in May ☺ (December ☺ for visitors)

Don't start the assignments yet; they are being updated.

Solve the assignments on your own. Don't share code. Exam is closed book.

Administration

Big dat

Performan

Assignment Deadlines

We'll provide you with a cluster to do assignments on. The cluster will be offline on Sunday 22 October 2017. \rightarrow Assignment 1 will probably be due before then.

Administration	Your Background	Overview	Big data	Performance	Clusters
000000					

Lectures Online, subject to revision.

Labs Practice on a cluster. Not marked, but in exam.

Papers Linked from the website.

Books Don't buy them. They're in the library: Data-Intensive Text Processing with MapReduce Hadoop: The Definitive Guide.

The exam is based on the lectures and labs.

Administration	Your Background	Overview	Big data	Performance	Clusters	~
000000						8

Labs

Run 2–27 October (four weeks) at these times: Monday 9am Monday 10am Tuesday 2pm Wednesday 10am Wednesday 2pm Thursday 9am Thursday 11am Friday 11am Friday 2pm

Lab groups will be chosen online: https://student.inf.ed.ac.uk.

Administration

Overview

Big da

• P

Performance 000000

Unix Command Line

We assume you know the Unix command line (typically bash).

```
tar cJ . | ssh server "cd $PWD && tar xJ"
diff <(zcat a.gz) <(zcat b.gz)</pre>
```

Administration	Your Background	Overview	Big data	Performance	Clusters	10
	•00					10

Unix Command Line

We assume you know the Unix command line (typically bash).

```
tar cJ . | ssh server "cd $PWD && tar xJ"
diff <(zcat a.gz) <(zcat b.gz)</pre>
```

If you didn't understand that, work through these: http://www.ed.ac.uk/information-services/help-consultancy/ is-skills/catalogue/program-op-sys-catalogue/unix1

https://www.lynda.com/Linux-tutorials/Linux-Bash-Shell-Scripts/ 504429-2.html (The university has a subscription to lynda.com)

AdministrationYour BackgroundOverviewBig dataPerformanceClus00000000000000000000000000000

Programming Languages

The only language we require is command line.

Examples are mostly Python and Java, with occasional C++.

Administration	Your Background	Overview	Big data	Performance	Clusters	10
	000					12

Programming Languages

The only language we require is command line.

Examples are mostly Python and Java, with occasional C++.

Average submission length:

	Lines	Words	Characters
Python	45.54	140.60	1412.81
Java	57.53	153.99	1738.76
Hint: basl	n is a pr	ogrammir	ng language.

inistration	Y
000	0

Adm

OOOOOO

Performance

Data Structures

Know and apply foundational data structures: hash tables, arrays, queues, ... These are taught in our second year undergraduate course, Informatics 2B. Inefficient data structure choices will lose marks.

Administration	Your Background	Overview	Big data	Performance	Clusters	14
	000					14

Core Course Content

- Working with big data
- Cluster computing with 10,000 machines
- How to pass a Google interview¹
- How clouds like Amazon Web Services work

¹Job at Google not guaranteed.

505 0	at coopie not put	anteeda			
Administration	Your Background	Overview	Big data	Performance	Clu
		•0			

Core Course Content

- Working with big data
- Cluster computing with 10,000 machines
- How to pass a Google interview¹
- How clouds like Amazon Web Services work

Not Part of the Course

- How to program (expected)
- Unix command line (learn it yourself)
- Mobile phones or Internet of things
- GPUs and FPGAs

¹Job at Google not guaranteed.

Topics

Big Data Cloud Computing Infrastructure MapReduce and Hadoop **Beyond MapReduce** Fault Tolerance and Replication NoSQL BASE vs ACID **BitTorrent** Data warehousing Data streams Virtualisation

What is big data?

"You can turn small data into big data by wrapping it XML."

"If things are breaking, you have big data."

Administration	Your Background	Overview	Big data	Performance	Clusters	10
			00000			18

What is big data?

"You can turn small data into big data by wrapping it XML." "If things are breaking, you have big data."

Big data is relative: not the same for Google and Informatics.

Administration	Your Background	Overview	Big data	Performance	Clusters	10
			00000			19

What is big data?

"You can turn small data into big data by wrapping it XML."

"If things are breaking, you have big data."

Big data is relative: not the same for Google and Informatics. Sometimes Google's big data is our small data! [Brants et al, 2007]

Administration	Your Background	Overview	Big data	Performance	Clusters	~~
			00000			20

The Internet Archive

560,000,000,000 Unique URLs of Web Crawl 4,000,000 eBooks 3,000,000 Hours of Television 2,400,000 Audio Recordings 2,300,000 Book Archive 2,000,000 Moving Images 25,000 Software Titles

30 Petabytes total17 Petabytes of websites (gzipped)2-3 Petabytes/year growth

Administration

Overview

Big data ○●○○○○ Performanc

900 TB in one machine

90 hard drives, each 10 TB, in one server

Administration

Your Background

Overview

Big data ○0●○○○ Perf ooc

Performance

Clusters

General Big Data

Government Demographics, communication Large Hadron Collider 15 PB/year Fraud detection Did your debit card work? Social media Who to follow? Search Can I borrow a copy of the web? Online advertising Placement, tracking, pricing

Administration	Your Background	Overview	Big data	Performance
			000000	

Common Source: Lots of Observations

- Every web page
- Mobile phone location reports
- Twitter posts
- Every Google search

Administration	Your Background	Overview	Big data	Performance	Clusters	~ 4
			000000			24

Modeling Challenges of Big Data

Hard to understand and visualize

Tools often fail: need new algorithms

Models may not scale Models that do scale may not show gains anymore

Administration	Your Background	Overview	Big data	Performance	Clusters	~
			000000			2

Performance

How do we access big data efficiently? What patterns do we use for computation?

Administration	Your Background	Overview	Big data	Performance	Clusters	~~
				00000		26

Disk Performance

Read speed on various devices:
Random bytes/sRandom bytes/sSequential bytes/sNVMe SSD24,7322,774,080,000Old SATA SSD7,848256,781,0005 TB Hard drive82171,302,000

Administration	Your Background	Overview	Big data	Performance	Clusters
				00000	

Disk Performance

Read speed on various devices:
Random bytes/sRandom bytes/sSequential bytes/sNVMe SSD24,7322,774,080,000Old SATA SSD7,848256,781,0005 TB Hard drive82171,302,000

Sequential is 100,000-2 million times faster!

Administration

Your Background

Overview

Big dat

Performa 0●0000 Clusters

Sequential access impacts algorithm choice:

	Complexity	Access
Hash table	O(n)	Random
Merge sort	$O(n \log n)$	Sequential batches

Constant factors matter: merge sort is faster on disk.

Administration	Your Background	Overview	Big data	Performance	Clusters	~~
				000000		29

Power Law

Big data often follows a power law.

Modelling the head (e.g. common words) is easier, but unrepresentative. Handling the tail is harder (e.g. selling all books, not just top 100).

Administration	Your Background	Overview	Big data	Performance	Clusters	~~
				000000		30

Power Law

Big data often follows a power law.

Modelling the head (e.g. common words) is easier, but unrepresentative. Handling the tail is harder (e.g. selling all books, not just top 100).

The machine responsible for "the" will take longer.

Administration	Your Background	Overview	Big data	Performance	Clusters	01
				000000		31

Challenge: Load Balancing

Distributed computing is a natural way to tackle big data. But we need to balance work across machines:

- ullet Head of power law goes to one or two nodes \implies slow
- Tail balanced over nodes \implies fast

Administration	Your Background	Overview	Big data	Performance	Clusters	20
				000000		- 32

Latency

How quickly does data move around the network?

- High-frequency trading: put machines next to the exchange
- Amazon (2007): sales decrease 1% for every 100ms increase in load time
- Google (2006): increasing page load time by 0.5 second produces a 20% drop in traffic
- Google rankings include page load time

Administration	Your Background	Overview	Big data	Performance	Clusters
				00000	

Data centres and clusters

Administration

Your Background

Overview

Big data

Performance

Clusters •0000000

Supercomputers

A pile of Linux boxes in the same room, with a fast network.

Top 3 (according to top500.org):

- Sunway TaihuLight 93,014 TFLOP/s, 10,649,600 cores
- Tiahne-2: 33 TFLOP/s, 3,120,000 cores
- S Piz Daint: 19 TFLOP/s, 361,760 cores

Administration	Your Background	Overview	Big data	Performance	Clusters
					0000000

Piz Daint

Administration

Your Background

Overview

Big data

Performance

Clusters 0000000

Economics of Servers: Own or Rent?

Many machines operate at 30% capacity.

) Wn
• Security
 Full control, customized hardware
 Tune for latency- or time-critical tasks
• Cheaper if machines will be used all the time

Rent

- Pay for servers, storage, and bandwidth by usage/hour
- Scale up to many servers when needed
- Compute is another commodity like electricity

Provisioning

Web traffic changes: time of day, shopping seasons, news, link from major site

 $\begin{array}{l} \text{High traffic} \rightarrow \text{more machines} \\ \text{Low traffic} \rightarrow \text{save cost} \end{array}$

Target (US Retailer) Website target.com is hosted on Amazon Web Services Busiest shopping day in 2009: 28 November Day target.com went offline: 28 November

Administration

Overview

Big dat

Performar

Data lock-in and third-party control

Some provider hosts our data:

- But we can only access it using proprietary (non-standard) APIs
- Lock-in makes customers vulnerable to price increases and dependent upon the provider

Providers may control our data in unexpected ways:

- July 2009: Amazon remotely remove books from Kindles
- Twitter prevents exporting tweets more than 3200 posts back
- Facebook locks user-data in
- August 2010: Google drops Google Wave

Privacy and Security

Laundry list of breaches:

- Equifax
- NHS
- Ashley Madison hack
- US government HR database leaks, including security clearance
- Carphone Warehouse, Target, Health insurers
- What if your cloud provider is hacked?
- Who has access? The government? Which governments?

Need for privacy guarantees and measures.

Summary: Big Data

- Scalable algorithms
- Tools for cluster computing
- Cloud providers and how they work

Administration	Your Background	Overview	Big data	Performance	Clusters	4.1
					0000000	41