
Engineering at Scale
THE CHALLENGES OF PREDICTING QUERIES IN WEB SEARCH ENGINES

Paul Baecke

http://www.bing.com/?cc=gb

Introduction
How is what we do ‘Extreme Computing’?

What is the product

Complexity online

Complexity offline

Complexity of systems

Some examples

Some numbers (online)
10^12 requests served per year

10^16

10^14

bytes of data logged per year

ms of CPU time used per year

QPS Data CPU

Average QPS > 100k > 1 GB > 5million ms

Thousands Years of CPU Time
per year!

More numbers (offline)
Some data is refreshed 12 times per day

All data is updated daily

Models updated weekly

Data scientists run 100s of experiments per week

Availability goal is > 99.995% uptime

Latency goal is < 50ms average

Why this matters
At this scale, every engineering decision matters

There is a deep focus on efficient data structures and algorithms

Every ms of CPU time saved, every byte of storage optimized:

Saves money & time

Allows for better experiences to be built

Makes users happier

Keeps our engineers on the cutting edge of research and best practices

Bing & Autosuggest
Infrastructure
WHAT IT TAKES TO SERVE BING & KEEP LIVE SITE HEALTHY

Bing Usage

>500 Million Bing Users

In 240 Countries/territories

>260 Million queries/day

>450 Million Windows Users

Serving 500M users requires massive scale

CO CH
BN

DB

HK

➢ Five datacenters

➢ 300,000 Servers

➢ ~100 Edge Nodes

➢ >$1 Billion/Year infrastructure cost

Bing AutoSuggest in Numbers

150k+ 500+ ~50ms 1.1B+ ~30

Outages are Newsworthy

Powered by Bing AutoSuggest

AutoSuggest
Predicting your query before you type it

netflix nearby restaurantsnew york times

What should we suggest?

Alice

User previous queries:

- movie streaming
- imdb ranking

Bob

User location:

Charlie

Day of week: Sunday
Time of day: 12h30
Device: mobile

4. Provide direct answers

Why is it useful?
1. Reduce query formulation effort

2. Prevent misspellings

3. Provide more relevant search results
• Search Result Pages (SERPs) tend to be

optimized for popular queries

AUTOSUGGEST - BEHIND THE SCENES

Overall architecture
(very simplified)

Ranker

Suggestion
Database

Data Process Pre-rank

OFFLINE ONLINE

Previous
User Queries

User Context

Typed Prefix

“r”

Candidates

Diversifier

Map reduce
Distributed ML

Pre-ranking
• Each query q is associated with (an estimate of) the
probability P(q) that a user will use it.

•The estimate is based on:
•how many times q was typed in the past

•how recently

•… and other factors

Suggestion Database - Candidate Generation
• Compressed data structure

• 1.1B suggestions and their
metadata fit in < 30 GB

• Very efficient retrieval of top-k
completions

[Hsu and Ottoviano, WWW 2013]

• Inverted Index over queries for
non prefix match suggestions

AUTOSUGGEST – CHALLENGES

Context Matters

netflix nearby restaurantsnew york times

What should we suggest?

Alice

User previous queries:

- movie streaming
- imdb ranking

Bob

User location:

Charlie

Day of week: Sunday
Time of day: 12h30
Device: mobile

Model P (Query | UserContext, Time)

User Location

Modify Query Prior Prob by

Affinity (Query, Location)
learnt from data

Some queries are much more
popular in some places than in
others

Localized Suggestions in Action

User Location: Redmond, WA User Location: New York, NY

Previous Query
Modify Query Prior by Affinity (Query, Previous Query)

User Previous Query: Querying again from Search Result Page:

Spelling Corrections

◦ Offline spell corrections
◦ Popular misspellings are stored in the trie

with a pointer to their correction

◦ Online spell corrections
◦ Exploration of the trie using an error model

learned from the data (frequent typos have
low penalty) [Duan and Hsu, WWW 2011]

facebok facebook

c

r

o

h

r

o

cro --> chro Variable cost,
learned from

data

5-15% of submitted queries
contain spelling errors

Diversity
Avoid showing “duplicate” suggestions e.g.:
◦ “aol”, “aol homepage”, “aol.com official site”

 Represent a diverse set of intents when input is underspecified

More Challenges
◦ Filtering queries with explicit sexual intent, offensive queries

and queries inciting to commit crimes

◦ Filtering Spam queries

◦ Ensuring high availability and low latency

◦ …

Trade-offs – what to build and how to
build it
This is were understanding the fundamentals of computing at scale kicks in

There are no easy answers:

Each potential solution has a cost in terms of complexity, storage, compute usage, serving cost

These costs need to be weighed up against product impact (which we won’t cover here)

Everything needs to be measured:

- Instrument production systems

- Profile during coding, don’t assume

- Gate on performance during builds and deployments

- Continuously evaluate and re-evaluate as systems change

Systems vs fundamentals: Lesson 1
Core trie data structure optimized to do micro second lookups

Custom data structure with per processor optimization to reduce cost online

Extreme computing win, yes?

Partly:

Code so complex it’s almost impossible to maintain

Extreme computing requires extreme engineering: turns out the serialization code was 100x
slower than the data structure

Systems vs fundamentals: Lesson 2
Let’s go back to basics. We have a middle tier workflow engine written in C#. You’ve been asked
to check at runtime whether a string is a duplicate in a list of strings you’ve already. How do you
do this?

A hash table/map? Right?

Depends.

It turns out for sufficiently small collections, iterating every time is not much slower.

Also, because every machine is serving multiple requests, it also reduces the impact on other
requests by reducing memory overhead and garbage collection pressure.

Sometimes, simple data structures and algorithms are more efficient overall

Systems vs fundamentals: Lesson 3
Map-reduce is awesome, it allows us to process petabytes of data

However, at some point even map-reduce doesn’t scale

Issues:

Data skew

Logs, even split across partitions, larger than can be read or processed

Sampling as a solution

Systems vs fundamentals: Lesson 4
The real complexity is not in the code or the individual components though

The system overall is larger than most engineers or scientists can reason over

A lot of extreme engineering is in place to allow extreme computing flourish

This abstraction needs to be balanced against needing to understand the complexity to produce
elegant and efficient solutions

There is no easy answer: it’s part science, part art, part experience

Conclusion
The techniques you are learning in this course provide a strong foundation to work at scale

We focus on these fundamentals

- When we design systems

- When we interview candidates

However extreme the computing, it fails if the systems are in place to facilitate it

Personal learning: the optimisations that mattered a generation or so ago matter again

Paul Baecke

Add me on LinkedIn if you
want to stay in touch:

https://uk.linkedin.com/in
/paulbaecke

https://uk.linkedin.com/in/paulbaecke

