
Extreme Computing
Joins and Fault Tolerance

Joins Bloom
1



Cluster

Theoretically working
Tasks fail occasionally, but (correct) jobs should run

Joins Bloom
2



Lab Sizes

Mon 09:00-09:50: 2 showed up, cancelled in future weeks
Mon 10:00-10:50: 29
Tue 14:10-15:00: 34
Wed 10:00-10:50: 12
Wed 14:10-15:00: 22
Thu 09:00-09:50: 9
Thu 11:10-12:00: 11
Fri 11:10-12:00: 13

Joins Bloom
3



Joins

How do we combine data sets in MapReduce?

It depends on how big each is. . .

Joins Bloom
4



Old Exam Question

You are provided with a set of interesting words and a large text
file. The task is to count how many times each interesting word
appears in the text file.

Joins Bloom
5



Hash Join

Load set of interesting words into RAM on each mapper:

#!/usr/bin/python3
import sys
interesting = set()
for word in open("interesting.txt"):

interesting.add(word.strip())

for line in sys.stdin:
for word in line.split():

if word in interesting:
print(word + "\t1")

Joins Bloom
6



Hash Join Efficiency

3 Limits traffic to reducers
3 Fast
7 Table needs to fit in RAM
7 Table copied to all mappers

Good plan for joining small data with large data

Can also query over the network. . . more later

Joins Bloom
7



Hash Join Efficiency

3 Limits traffic to reducers
3 Fast
7 Table needs to fit in RAM
7 Table copied to all mappers

Good plan for joining small data with large data

Can also query over the network. . . more later

Joins Bloom
8



Sorted Join in Mapper

Which words are used more in YouTube comments than Yahoo answers?

We already ran word count on each with the same sorting and partitioning.

Mapper Mapper

YouTube
a 10
video 3

Yahoo
a 15
what 4

YouTube
cats 90
lolz 3

Yahoo
cats 2
lolz 9

Joins Bloom
9



Sorted Join in Mapper: Efficiency

3 Fast (faster than hash join)
3 Large data
3 Limits traffic to reducers (or no reducers)
7 Input must be sorted the same way
7 Input must be partitioned the same way

Best plan if the data is already sorted and partitioned this way.
=⇒ Plan ahead!

Joins Bloom
10



Reducer Join

Already ran word count on YouTube and Yahoo answers.
But partitioned it differently → reduce join

Map: (word, count) 7→ (word, corpus, count)
Partition: word
Sort: (word, corpus)
Reduce: Divide counts

(We’ve seen this before with Alice and Bob)

Joins Bloom
11



Reducer Join: Efficiency

7 Slow
7 Data copied over network
3 Large data
3 General

Joins Bloom
12



Three Join Strategies

Sorted and partitioned same way?→Sorted Join in Map
Is one side small? →Hash Join in Map
General problem →Reducer Join (which is sorted)

Joins Bloom
13



Bloom Filters

Joins Bloom
14



A Problem
Interesting words do not fit in RAM, still want to do a hash join.

In General
Efficiently represent a set with some false positives.

Joins Bloom
15



Bloom Filter
Represent a set, probabilistically.

insert(key) Add key to the set.

query(key) If key is in the set, return maybe.
If key is not in the set, return no or maybe.

Usage
Ask a Bloom filter locally.

no Key is definitely not found → avoid network.
maybe Ask the network.

Joins Bloom
16



Bloom Filter
Represent a set, probabilistically.

insert(key) Add key to the set.

query(key) If key is in the set, return maybe.
If key is not in the set, return no or maybe.

Usage
Ask a Bloom filter locally.

no Key is definitely not found → avoid network.
maybe Ask the network.

Joins Bloom
17



Bit Array

key = a

h3
h1

h2
h1

h2h3h1
h3

h2h1
h3

h2

1 Initially the array is all 0s.

2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.

4 Queries check that the corresponding bits are 1.

Joins Bloom
18



Bit Array

key = a

h3
h1

h2

h1
h2h3h1

h3
h2h1

h3
h2

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.

3 Insertion sets the corresponding bits to 1.

4 Queries check that the corresponding bits are 1.

Joins Bloom
19



Bit Array

key = a

h3
h1

h2

h1
h2h3h1

h3
h2h1

h3
h2

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.

4 Queries check that the corresponding bits are 1.

Joins Bloom
20



Bit Array

key = the

h3
h1

h2

h1
h2h3

h1
h3

h2h1
h3

h2

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.

4 Queries check that the corresponding bits are 1.

Joins Bloom
21



Bit Array

key = test

h3
h1

h2
h1

h2h3

h1
h3

h2

h1
h3

h2

Not present

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.
4 Queries check that the corresponding bits are 1.

Joins Bloom
22



Bit Array

key = evil

h3
h1

h2
h1

h2h3h1
h3

h2

h1
h3

h2

False positive

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.
4 Queries check that the corresponding bits are 1.

Joins Bloom
23



Bloom Filters: memory efficient
. . . but some probability of false positives.

Not done yet:
Need multiple hash functions.
What is the false-positive probability?
How many hash functions?

Joins Bloom
24



Bloom Filters: memory efficient
. . . but some probability of false positives.

Not done yet:
Need multiple hash functions.
What is the false-positive probability?
How many hash functions?

Joins Bloom
25



Multiple Hash Functions?

We need independent hash functions:

h1(the), h2(the), h3(the), . . .

Just use one good hash function h and concatenate with key:

h(1_key), h(2_key), h(3_key), . . .

Joins Bloom
26



Multiple Hash Functions?

We need independent hash functions:

h1(the), h2(the), h3(the), . . .

Just use one good hash function h and concatenate with key:

h(1_key), h(2_key), h(3_key), . . .

Joins Bloom
27



The optimal number of hashes is

hashes ≈ bits
entries

ln 2

To satisfy false-positive probability p, Bloom filters use

≈ − log2 p

ln 2

bits per key.

Don’t worry about the exact equations.
But deriving them is fun!

Joins Bloom
28



0

5

10

15

20

25

0.000010 0.000100 0.001000 0.010000 0.100000 1.000000

B
its

pe
r
ke
y

False positive rate (p)

Joins Bloom
29



Summary

Approximately represent a very large set in small memory.

Used to reduce expensive lookups in SSTable, BigTable, . . .

Also useful in isolation for error-tolerant tasks.

Joins Bloom
30


	Joins
	Bloom

