Extreme Computing

Introduction to MapReduce

Cl	uster
00	00

Cluster

We have 12 servers: scutter01, scutter02, ... scutter12

If working outside Informatics, first:
ssh student.ssh.inf.ed.ac.uk

Then log into a random server: ssh scutter\$(printf "%02i"\$((RANDOM%12+1)))

Please load balance! Two years ago the cluster crashed.

Cluster	
•00	

Cluster Software

The cluster runs Hadoop on DICE (the Informatics Linux Environment).

- \implies No need to install software yourself. You can run your own cluster but:
 - We won't help you install it
 - Copy your output to the cluster
 - Code should run on the cluster

Cluster	(Эu
000		

Cluster Software

The cluster runs Hadoop on DICE (the Informatics Linux Environment).

- \implies No need to install software yourself. You can run your own cluster but:
 - We won't help you install it
 - Copy your output to the cluster
 - Code should run on the cluster

 \implies Make sure your DICE account works! We don't have root so only computing support can help. Do this before the labs starting 2 October.

Cluster	
000	

Companies I Take Money From

Currently no Guest Lecture **ebay Google moz://a**

MapReduce

Incremental Approach Build MapReduce from problems. Assemble picture at the end.

Assignment 1 is pure MapReduce problems.

CI	us	te	
0	00		

grep

grep extreme Find every line containing "extreme" in a text file.

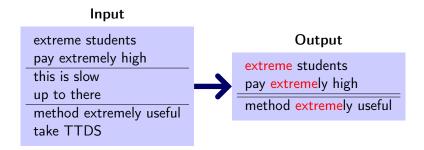
Clı	ıster	
00		

grep

Find every line containing "extreme" in a text file.

Input

extreme students pay extremely high this is slow up to there method extremely useful take TTDS


Output

extreme students pay extremely high method extremely useful

Clu	ster
000	

Distributed grep

Find every line containing "extreme" in a text file.

Split input into pieces, run grep on each.

Cluster	Outline	Map	Reduce
		000000	00000 9

Interlude: Pieces of a Text File

Goal: assign a piece of the text file to each machine.

- Non-overlapping
- Break at line boundaries
- Fast (don't read more than you have to)
- Balanced (roughly equal sizes)

Cluster	Outline	Map	Reduce	10
		000000		Τ(

seeking

seek allows one to skip to a particular byte in a file.

There is no seek for *line* offsets. You'd have read the file from the beginning and count newlines.

But we can seek to a byte offset, then round up to the next line.

Cl	uster
00	00

Rounding bytes to lines

Split a 300-byte text file:		
Task	Byte Assignment	Line Rounding
0	0–99	0–102
1	100-199	103–207
2	200–299	208–299

Each task can read until it sees a newline, then round up to that.

 \rightarrow Work is divided at line boundaries.

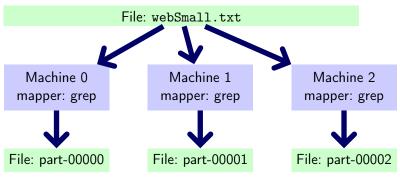
Cluster	
000	

Hadoop is an implementation of MapReduce.

This just shows how Hadoop splits input:

hadoop jar hadoop-streaming-2.7.3.jar -input /data/assignments/ex1/webSmall.txt -output /user/\$USER/catted -mapper "cat" -reducer NONE Run Hadoop Read big text file Write here Just copy the input Ignore this for now

Don't worry, you'll get too much practice in the labs.

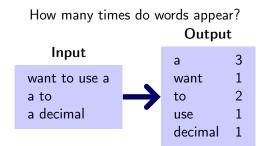

Distributed grep

hadoop jar hadoop-streaming-2.7.3.jar -input /data/assignments/ex1/webSmall.txt -output /user/\$USER/grepped -mapper "grep extreme" -reducer NONE

Run Hadoop Read big text file Write here Scan for "extreme" Ignore this for now

Cl	uste	
oc	0	

Summarizing


Hadoop takes care of:

- Shared file system
- Splitting input at line boundaries
- Launching tasks on multiple machines

We can specify any command ("a mapper") to run.

Cluster	Outline	Map	Reduce	4 6
		000000		15

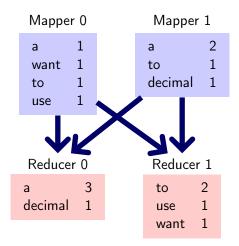
Word Count

Cluster	Outline	Map	Reduce	10
			00000	16

Each mapper counts independently:

Mapper	0	Mapper	1
а	1	а	2
want	1	to	1
to	1	decimal	1
use	1		

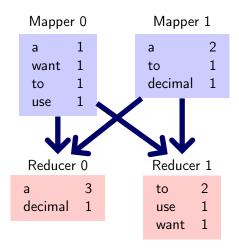
Problem: Need to collate/sum counts


Cluster		

Outline

Мар 0000000 Reduce 0●000

17


Each mapper counts independently:

Reducers sum counts

Cluster	Outline	Map	Reduce	10
			00000	18

Each mapper counts independently:

Reducers sum counts

Mappers hash the word mod 2 to decide which reducer to send to.

Cluster	Outline	Map	Reduce	10
			00000	19

Examine Reducer Input

hadoop jar hadoop-streaming-2.7.3.jarRun Hadoop-files count_map.pyCopy code to workers-input /data/assignments/ex1/webSmall.txtRead big text file-output /user/\$USER/reducespyWrite here-mapper count_map.pyCount words locally-reducer catLeave as is

cat will copy input to output, so we can see what the input is.

20

Sorting

Hadoop sorts reducer input for you:

Unsorted: Annoying			/ing	Sorted:	Easy
	to	1		to	1
	want	1		to	1
	use	1		use	1
	to	1		want	1

Sorting makes it easy to stream in constant memory. Unsorted would require remembering words in memory.

Cli	ister	Outline	Map

Examine Reducer Input

hadoop jar hadoop-streaming-2.7.3.jar -files count_map.py,count_reduce.py -input /data/assignments/ex1/webSmall.txt -output /user/\$USER/count -mapper count_map.py -reducer count_reduce.py

And we get word count... hopefully

Run Hadoop Copy code to workers Read big text file Write here Count words locally Sum counts