
Bloom Filters
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A Problem
Lookup five-word sequences, return count (or not found)

Most are misses (not found)

In General
Distributed storage

New keys are broadcast (or read-only)
High miss rate

Handle some misses locally
=⇒

Reduce network
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Bloom Filter
Represent a set, probabilistically.

insert(key) Add key to the set.

query(key) If key is in the set, return maybe.
If key is not in the set, return no or maybe.

Usage
Ask a Bloom filter locally.

no Key is definitely not found → avoid network.
maybe Ask the network.
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Bit Array

key = a

h3
h1

h2
h1

h2h3h1
h3

h2h1
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1 Initially the array is all 0s.

2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.

4 Queries check that the corresponding bits are 1.
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Bit Array

key = test
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Not present

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.
4 Queries check that the corresponding bits are 1.
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Bit Array

key = evil
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False positive

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.
4 Queries check that the corresponding bits are 1.
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Bloom Filters: memory efficient
. . . but some probability of false positives.

Not done yet:
Need multiple hash functions.
What is the false-positive probability?
How many hash functions?
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Multiple Hash Functions?

We need independent hash functions:

h1(the), h2(the), h3(the), . . .

Just use one good hash function h and concatenate with key:

h(1_key), h(2_key), h(3_key), . . .
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The optimal number of hashes is

hashes ≈ bits
entries

ln 2

To satisfy false-positive probability p, Bloom filters use

≈ − log2 p

ln 2

bits per key.

Don’t worry about the exact equations.
But deriving them is fun!
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Summary

Approximately represent a very large set in small memory.

Used to reduce expensive lookups in SSTable, BigTable, . . .

Also useful in isolation for error-tolerant tasks.
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