
Bloom Filters

1



A Problem
Lookup five-word sequences, return count (or not found)

Most are misses (not found)

In General
Distributed storage

New keys are broadcast (or read-only)
High miss rate

Handle some misses locally
=⇒

Reduce network

2



A Problem
Lookup five-word sequences, return count (or not found)

Most are misses (not found)

In General
Distributed storage

New keys are broadcast (or read-only)
High miss rate

Handle some misses locally
=⇒

Reduce network

3



A Problem
Lookup five-word sequences, return count (or not found)

Most are misses (not found)

In General
Distributed storage

New keys are broadcast (or read-only)
High miss rate

Handle some misses locally
=⇒

Reduce network

4



Bloom Filter
Represent a set, probabilistically.

insert(key) Add key to the set.

query(key) If key is in the set, return maybe.
If key is not in the set, return no or maybe.

Usage
Ask a Bloom filter locally.

no Key is definitely not found → avoid network.
maybe Ask the network.

5



Bloom Filter
Represent a set, probabilistically.

insert(key) Add key to the set.

query(key) If key is in the set, return maybe.
If key is not in the set, return no or maybe.

Usage
Ask a Bloom filter locally.

no Key is definitely not found → avoid network.
maybe Ask the network.

6



Bit Array

key = a

h3
h1

h2
h1

h2h3h1
h3

h2h1
h3

h2

1 Initially the array is all 0s.

2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.

4 Queries check that the corresponding bits are 1.

7



Bit Array

key = a

h3
h1

h2

h1
h2h3h1

h3
h2h1

h3
h2

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.

3 Insertion sets the corresponding bits to 1.

4 Queries check that the corresponding bits are 1.

8



Bit Array

key = a

h3
h1

h2

h1
h2h3h1

h3
h2h1

h3
h2

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.

4 Queries check that the corresponding bits are 1.

9



Bit Array

key = the

h3
h1

h2

h1
h2h3

h1
h3

h2h1
h3

h2

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.

4 Queries check that the corresponding bits are 1.

10



Bit Array

key = test

h3
h1

h2
h1

h2h3

h1
h3

h2

h1
h3

h2

Not present

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.
4 Queries check that the corresponding bits are 1.

11



Bit Array

key = evil

h3
h1

h2
h1

h2h3h1
h3

h2

h1
h3

h2

False positive

1 Initially the array is all 0s.
2 Hash functions assign bit positions to keys.
3 Insertion sets the corresponding bits to 1.
4 Queries check that the corresponding bits are 1.

12



Bloom Filters: memory efficient
. . . but some probability of false positives.

Not done yet:
Need multiple hash functions.
What is the false-positive probability?
How many hash functions?

13



Bloom Filters: memory efficient
. . . but some probability of false positives.

Not done yet:
Need multiple hash functions.
What is the false-positive probability?
How many hash functions?

14



Multiple Hash Functions?

We need independent hash functions:

h1(the), h2(the), h3(the), . . .

Just use one good hash function h and concatenate with key:

h(1_key), h(2_key), h(3_key), . . .

15



Multiple Hash Functions?

We need independent hash functions:

h1(the), h2(the), h3(the), . . .

Just use one good hash function h and concatenate with key:

h(1_key), h(2_key), h(3_key), . . .

16



The optimal number of hashes is

hashes ≈ bits
entries

ln 2

To satisfy false-positive probability p, Bloom filters use

≈ − log2 p

ln 2

bits per key.

Don’t worry about the exact equations.
But deriving them is fun!

17



0

5

10

15

20

25

1e-05 0.0001 0.001 0.01 0.1 1

B
its

pe
r
ke
y

False positive rate (p)

18



Summary

Approximately represent a very large set in small memory.

Used to reduce expensive lookups in SSTable, BigTable, . . .

Also useful in isolation for error-tolerant tasks.

19


