Bloom Filters
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Handle some misses locally
—
Reduce network

—
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Usage
Ask a Bloom filter locally.
no Key is definitely not found — avoid network.
maybe Ask the network.
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@ Hash functions assign bit positions to keys.

© Insertion sets the corresponding bits to 1.

@ Queries check that the corresponding bits are 1.
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Not done yet:
@ Need multiple hash functions.

@ What is the false-positive probability?

@ How many hash functions?
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Multiple Hash Functions?

We need independent hash functions:

hi(the), ha(the), h3(the),. ..

Just use one good hash function h and concatenate with key:

h(1_key), h(2_key), h(3_key), . ..




The optimal number of hashes is

bits
entries

hashes ~

To satisfy false-positive probability p, Bloom filters use

__ —logyp
In2
bits per key.

Don't worry about the exact equations.
But deriving them is fun!
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Summary

Approximately represent a very large set in small memory.

Used to reduce expensive lookups in SSTable, BigTable, ...

Also useful in isolation for error-tolerant tasks.




