Bloom Filters




A Problem

Lookup five-word sequences, return count (or not found)
Most are misses (not found)




A Problem

Lookup five-word sequences, return count (or not found)
Most are misses (not found)

In General
Distributed storage
New keys are broadcast (or read-only)
High miss rate




A Problem

Lookup five-word sequences, return count (or not found)
Most are misses (not found)

In General

Distributed storage
New keys are broadcast (or read-only)
High miss rate

Handle some misses locally
—
Reduce network

—



Bloom Filter

Represent a set, probabilistically.

insert (key) Add key to the set.

query (key) If key is in the set, return maybe.
If key is not in the set, return no or maybe.




Bloom Filter

Represent a set, probabilistically.
insert (key) Add key to the set.

query (key) If key is in the set, return maybe.
If key is not in the set, return no or maybe.

Usage
Ask a Bloom filter locally.
no Key is definitely not found — avoid network.
maybe Ask the network.



Bit Array

Q Initially the array is all Os.




Bit Array

hs hy
ht

key = a

@ Initially the array is all Os.

@ Hash functions assign bit positions to keys.




Bit Array

hy

key = a

@ Initially the array is all Os.
@ Hash functions assign bit positions to keys.

© Insertion sets the corresponding bits to 1.




Bit Array

=

key = the

@ Initially the array is all Os.
@ Hash functions assign bit positions to keys.

© Insertion sets the corresponding bits to 1.




Bit Array

%I o

key = test

Not present

@ Initially the array is all Os.
@ Hash functions assign bit positions to keys.

© Insertion sets the corresponding bits to 1.

@ Queries check that the corresponding bits are 1.




Bit Array

hy ho
h3

key = evil

False positive

© Initially the array is all Os.
@ Hash functions assign bit positions to keys.

© Insertion sets the corresponding bits to 1.

@ Queries check that the corresponding bits are 1.




Bloom Filters: memory efficient
... but some probability of false positives.




Bloom Filters: memory efficient
... but some probability of false positives.

Not done yet:
@ Need multiple hash functions.

@ What is the false-positive probability?

@ How many hash functions?




Multiple Hash Functions?

We need independent hash functions:

hi(the), ha(the), h3(the),. ..




Multiple Hash Functions?

We need independent hash functions:

hi(the), ha(the), h3(the),. ..

Just use one good hash function h and concatenate with key:

h(1_key), h(2_key), h(3_key), . ..




The optimal number of hashes is

bits
entries

hashes ~

To satisfy false-positive probability p, Bloom filters use

__ —logyp
In2
bits per key.

Don't worry about the exact equations.
But deriving them is fun!



25

Bits per key
—
(6]
\
\

[y
o
I

|

0 ! I ! I ! I ! ! ! L
1le-05 0.0001 0.001 0.01 0.1 1
False positive rate (p)




Summary

Approximately represent a very large set in small memory.

Used to reduce expensive lookups in SSTable, BigTable, ...

Also useful in isolation for error-tolerant tasks.




