
www.inf.ed.ac.uk

Extreme Computing	

Behind the scenes: virtualisation

www.inf.ed.ac.uk

Overview	

•  One of the most important techniques for the separation of hardware,

operating system, and applications

•  Various instances of virtualisation used every day without even knowing
(hey, it’s virtual after all!)

•  Started back in 1964 with IBM’s CP-40, a “virtual machine/virtual memory
time sharing operating system”

•  Key ideas: abstraction and well-defined interfaces

– These interfaces can be implemented differently for different platforms
(think Java)

– Or emulated by the host platform (think VMWare)

•  We will focus on three types of virtualisation

– CPU, memory, and device(I/O)

www.inf.ed.ac.uk

CPUs and computer architecture	

www.inf.ed.ac.uk

What’s in a CPU and how can we virtualise it? ���
	

•  It all comes down to one thing: the Instruction Set Architecture (ISA)

– State visible to the programmer (registers, volatile memory)

–  Instructions that operate on the state

•  Divided into two parts

– User ISA used for developing/executing user programs (go wild, you
can’t break the system from here)

– System ISA used mainly by the kernel for system resource
management (careful here)

•  Most CPU virtualisation techniques focus on the ISA

– System ISA virtualisation, instruction interpretation, trap and emulate,
binary translation, hybrid models

www.inf.ed.ac.uk

User ISA: state and instructions ���
	
•  State captures the various components of the system

– Virtual memory (physical, swap)

– Special purpose registers (program counter, conditions, interrupts)

– General purpose registers (this is the actual data that is manipulated)

– ALU floating point registers (mathematical operations)

•  Instructions capture the current parameters of each stage in the
processor’s pipeline

– Typically: fetch, decode, access registers, memory, write-back

– One instruction per stage

– Mutiple instructions in the pipeline, at different stages

www.inf.ed.ac.uk

System ISA: where it all takes place	

•  Privilege levels (or rings)
•  Control registers of the processor

•  Processor and/or operating system traps
and interrupts

– Hard coded vectors (non-maskable
interrupts and standard handlers)

– Dispatch table (extension interrupt
handlers)

•  System clock

•  Memory management unit

– Page table, translation lookaside buffer

•  Device I/O

kernel
(ring 0)

user

(ring 3)

extensions

(ring 2)

kernel + extensions = system

www.inf.ed.ac.uk

host

guest

The CPU virtualisation isomprphism	

•  Virtualisation is the construction of an
isomorphism from guest state to host state

– Guest state Si is mapped onto host state
Si′ through some function V() : V(Si) = Si’

– For every transformation e() between
states Si and Sj in the guest, there is a
corresponding transformation e′() in the
host such that e′(Si’) = Sj’ and V(Sj) = Sj’

– Virtualisation implements V() and the
translation of e() to e’()

Si Sj

Si’ Sj’

e(Si)

e(Sj’)

V(Si) V(Sj’)

www.inf.ed.ac.uk

Virtualising the System ISA	

•  Key concept: the virtualisation monitor (or hypervisor)

–  This is the actual implementation of the virtual machine

–  The guest assumes complete control of the hardware
–  But that is not possible—in fact, it’s a security breach

–  So the monitor supervises the guest and virtualises calls to the guest’s System
ISA

–  Retargets them for the host

•  Methodology is straightforward

–  Whenever the guest accesses the System ISA, the monitor takes over

–  Monitor maintains guest system state and transforms it whenever necessary

–  Guest system instructions are implemented as monitor functions affecting the
host

–  Two-fold goal

•  Normal instructions are executed natively

•  Privileged instructions are isolated from the host

www.inf.ed.ac.uk

virtual machine (monitor)

Trap and emulate	

•  Not all architectures support “trap and emulate” virtualisation
– Most current CPUs have direct virtualisation hooks

•  Trapping costs might be high (more calls than necessary)

•  Virtual monitor runs at a higher privilege level

– For instance, the Linux kernel only supports rings 0 (kernel) and 3
(user) though extensions like kvm	 solve the problem

CPU
emulation

MMU
emulation

I/O
emulation

guest OS and applications

intrpt
instr

page
fault

I/O

call

user space
(unprivileged)

system and/or
kernel space
(privileged)

www.inf.ed.ac.uk

Other types of CPU virtualisation	

•  Binary translation

– Either compile programs to an intermediate representation and interpret
them

•  Java (bytecode), llvm (virtual processor)

•  Implement the entire runtime multiple times for different platforms

– Or, transform on-the-fly the natively compiled binary code

•  Very error-prone and hard to get right, especially when shifting
between architectures

•  Hybrid models

– Solid parts of the system are binary translated (e.g., kernel
functionality)

– User code is trapped and emulated

www.inf.ed.ac.uk

But where is the monitor?	

•  The virtual machine monitor is yet another process

– Shares the same virtual address space with the address space it is
virtualising (!)

•  As with CPU virtualisation, it handles specific interrupts (page faults)
•  If using trap-and-emulate CPU virtualisation the situation is somewhat easier

– The monitor only needs to be protected from guest accesses

– Easy; run in host kernel/extension level
– Monitor specific ranges of the virtual address space to identify if a memory

request needs to be resolved or not; offload others to host OS
•  For binary translation need a memory model distinguishing between host

(priviliged, non-translated) and guest (unprivileged, translated) accesses
•  Hardware-support: segmentation on x86 architectures

– Monitor in dedicated memory region
– Guest cannot see monitor’s region

www.inf.ed.ac.uk

One step further out	

•  CPU virtualisation

– Execute instructions developed for one CPU on another one

•  Memory virtualisation

– Allow multiple guest operating systems and their applications to see the
same memory address space

– Executed by a host operating system on a host CPU

•  Both of them are a good start; but full-fledged systems access devices as
well

– A device is anything that can perform I/O

– Hard-disk drives, displays, peripherals, you name it

www.inf.ed.ac.uk

Why virtualise I/O and how?	

•  Uniformity and isolation

– A disk should behave like a single local disk regardless of whether it is
remote or a RAID

– Devices isolated from one another; they operate as if they were the
only device around

•  Performance and multiplexing

– Let lower-level entities optimise the I/O path; they know how to do
things better than explicit read/writes

– Parallelise the process (e.g., when replicating data)

•  System evolution and reconfiguration

– Taking the system offline to connect a new drive, or repair a damaged
one is no longer an option

•  Techniques: direct access, emulation, paravirtualisation

www.inf.ed.ac.uk

Direct access	

www.inf.ed.ac.uk

Virtualisation through direct access	

•  Advantages

– No changes to guest, same operation is what it was designed for

– Easy to deploy

– Simple monitor: only implement drivers for the virtual hardware

•  Disadvantages
– Cannot happen without specialised hardware

– Need to make the hardware interface visible to the guest

•  We just lost extensibility
– Different hardware, different drivers

•  Guest needs to cater for all possible drivers (not only the real ones, but the
virtual ones as well!)

•  Too much reliance on the hardware for software-related operations (e.g.,
scheduling, multiplexing, etc.)

www.inf.ed.ac.uk

Device emulation	

•  Just as before, introduce an abstraction layer

– Per class of device, e.g., for all disk drives

–  Implement the abstraction for different instances of the device e.g.,
drivers for disk interfaces, types of disk (HDD, solid state, …)

•  Advantages

– Device isolation

– Stability: guest needs to operate just as before

– Devices can be moved freely and/or reconfigured

– No special hardware; all at the monitor level

•  Disadvantages

– The drivers need to be in the monitor or the host

– Potentially slow: path from guest to device is longer

– Possibility of duplicate effort: different drivers for the guest, different
drivers for host

www.inf.ed.ac.uk

Paravirtualisation	

•  The solution most contemporary virtual machine monitors use
•  Effectively, reverse the direction of the communication

–  Instead of trapping guest calls and emulating them by translating them
for the host

•  Expose the monitor and allow guest to make monitor calls

•  Implement guest-specific drivers

•  Implement the drivers once for each device at the monitor

•  Advantages

– Monitor now becomes simpler (and simple usually equals fast)

– No duplication

•  Disadvantages

– We still need drivers, but now drivers for the guest

– Bootstrapping becomes an issue: can't host a guest operating system
until there are drivers available

www.inf.ed.ac.uk

The design of VMWare ESX 2.04 ���
	

VM
monitorVM

monitorVM
monitor

application
s

guest OS

application
s

guest OS

applications

guest OS

VM Kernel

Hardware interface layer

hardware
cpu + memorynetwork storage ...

resource
manager

Host
OS

Host
applications

www.inf.ed.ac.uk

The hybrid design of the Xen hypervisor	

Guest
OS

hardware

Xen Hypervisor
(HW supported

runs in special mode)

Virtual CPU

Device
Control

Virtual MMU

Virtual NIC

Xen
kernel
backend

HW
drivers

VM 0

Guest
OS

(linux)

Guest
OS

(SMP)

Guest
OS

(windows)

frontend
HW

drivers

frontend
HW

drivers

frontend
HW

drivers

VM 1 VM 2 VM 3

control
SW

user
SW

user
SWuser
SW

user
SW •  Pararvirtualisation

for Linux guests

•  Hardware-
virtualisation for
Windows

•  Single
implementation of
device drivers,
single access to
hardware

www.inf.ed.ac.uk

Summary	

•  Introduced virtualisation
•  Discussed why it is necessary to use virtualisation

– Abstraction of hardware from software

– Ability to emulate other environments from specific CPUs and operating
systems

•  Presented different ways to virtualise various aspect of a computing
system

– Kernel, memory, devices

•  Showed architectures used in contemporary virtualisation offerings

