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Extreme Computing	

Behind the scenes: virtualisation 
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Overview	

•  One of the most important techniques for the separation of hardware, 

operating system, and applications 

•  Various instances of virtualisation used every day without even knowing 
(hey, it’s virtual after all!) 

•  Started back in 1964 with IBM’s CP-40, a “virtual machine/virtual memory 
time sharing operating system” 

•  Key ideas: abstraction and well-defined interfaces 

– These interfaces can be implemented differently for different platforms 
(think Java)  

– Or emulated by the host platform (think VMWare) 

•  We will focus on three types of virtualisation 

– CPU, memory, and device(I/O) 
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CPUs and computer architecture	
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What’s in a CPU and how can we virtualise it? ���
	

•  It all comes down to one thing: the Instruction Set Architecture (ISA) 

– State visible to the programmer (registers, volatile memory) 

–  Instructions that operate on the state  

•  Divided into two parts  

– User ISA used for developing/executing user programs (go wild, you 
can’t break the system from here)  

– System ISA used mainly by the kernel for system resource 
management (careful here) 

•  Most CPU virtualisation techniques focus on the ISA  

– System ISA virtualisation, instruction interpretation, trap and emulate, 
binary translation, hybrid models  
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User ISA: state and instructions ���
	
•  State captures the various components of the system 

– Virtual memory (physical, swap)  

– Special purpose registers (program counter, conditions, interrupts) 

– General purpose registers (this is the actual data that is manipulated)  

– ALU floating point registers (mathematical operations)  

•  Instructions capture the current parameters of each stage in the 
processor’s pipeline  

– Typically: fetch, decode, access registers, memory, write-back  

– One instruction per stage 

– Mutiple instructions in the pipeline, at different stages  
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System ISA: where it all takes place	

•  Privilege levels (or rings)  
•  Control registers of the processor  

•  Processor and/or operating system traps 
and interrupts  

– Hard coded vectors (non-maskable 
interrupts and standard handlers) 

– Dispatch table (extension interrupt 
handlers)  

•  System clock  

•  Memory management unit  

– Page table, translation lookaside buffer  

•  Device I/O  

kernel 
(ring 0) 

user 

(ring 3) 

extensions 

(ring 2) 

kernel + extensions = system 
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host 

guest 

The CPU virtualisation isomprphism	


•  Virtualisation is the construction of an 
isomorphism from guest state to host state  

– Guest state Si is mapped onto host state 
Si′ through some function V() : V(Si) = Si’ 

– For every transformation e() between 
states Si and Sj in the guest, there is a 
corresponding transformation e′() in the 
host such that e′(Si’) = Sj’ and V(Sj) = Sj’ 

– Virtualisation implements V() and the 
translation of e() to e’()  

Si Sj 

Si’ Sj’ 

e(Si) 

e(Sj’) 

V(Si) V(Sj’) 
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Virtualising the System ISA	

•  Key concept: the virtualisation monitor (or hypervisor)  

–  This is the actual implementation of the virtual machine  

–  The guest assumes complete control of the hardware  
–  But that is not possible—in fact, it’s a security breach  

–  So the monitor supervises the guest and virtualises calls to the guest’s System 
ISA  

–  Retargets them for the host  

•  Methodology is straightforward  

–  Whenever the guest accesses the System ISA, the monitor takes over  

–  Monitor maintains guest system state and transforms it whenever necessary  

–  Guest system instructions are implemented as monitor functions affecting the 
host  

–  Two-fold goal  

•  Normal instructions are executed natively 

•  Privileged instructions are isolated from the host  
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virtual machine (monitor) 

Trap and emulate	


•  Not all architectures support “trap and emulate” virtualisation  
– Most current CPUs have direct virtualisation hooks  

•  Trapping costs might be high (more calls than necessary)  

•  Virtual monitor runs at a higher privilege level  

– For instance, the Linux kernel only supports rings 0 (kernel) and 3 
(user) though extensions like kvm	  solve the problem  

CPU 
emulation 

MMU 
emulation 

I/O 
emulation 

guest OS and applications 

intrpt 
instr 

page 
fault 

I/O
 

call 

user space 
(unprivileged) 

system and/or 
kernel space 
(privileged) 
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Other types of CPU virtualisation	

•  Binary translation 

– Either compile programs to an intermediate representation and interpret 
them 

•  Java (bytecode), llvm (virtual processor) 

•  Implement the entire runtime multiple times for different platforms 

– Or, transform on-the-fly the natively compiled binary code 

•  Very error-prone and hard to get right, especially when shifting 
between architectures 

•  Hybrid models  

– Solid parts of the system are binary translated (e.g., kernel 
functionality)  

– User code is trapped and emulated  
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But where is the monitor?	

•  The virtual machine monitor is yet another process 

– Shares the same virtual address space with the address space it is 
virtualising (!)  

•  As with CPU virtualisation, it handles specific interrupts (page faults)  
•  If using trap-and-emulate CPU virtualisation the situation is somewhat easier  

– The monitor only needs to be protected from guest accesses  

– Easy; run in host kernel/extension level  
– Monitor specific ranges of the virtual address space to identify if a memory 

request needs to be resolved or not; offload others to host OS 
•  For binary translation need a memory model distinguishing between host 

(priviliged, non-translated) and guest (unprivileged, translated) accesses  
•  Hardware-support: segmentation on x86 architectures 

– Monitor in dedicated memory region 
– Guest cannot see monitor’s region  
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One step further out	

•  CPU virtualisation 

– Execute instructions developed for one CPU on another one  

•  Memory virtualisation  

– Allow multiple guest operating systems and their applications to see the 
same memory address space  

– Executed by a host operating system on a host CPU  

•  Both of them are a good start; but full-fledged systems access devices as 
well  

– A device is anything that can perform I/O 

– Hard-disk drives, displays, peripherals, you name it  
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Why virtualise I/O and how?	

•  Uniformity and isolation  

– A disk should behave like a single local disk regardless of whether it is 
remote or a RAID  

– Devices isolated from one another; they operate as if they were the 
only device around 

•  Performance and multiplexing  

– Let lower-level entities optimise the I/O path; they know how to do 
things better than explicit read/writes  

– Parallelise the process (e.g., when replicating data)  

•  System evolution and reconfiguration  

– Taking the system offline to connect a new drive, or repair a damaged 
one is no longer an option  

•  Techniques: direct access, emulation, paravirtualisation  
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Direct access	
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Virtualisation through direct access	

•  Advantages 

– No changes to guest, same operation is what it was designed for 

– Easy to deploy 

– Simple monitor: only implement drivers for the virtual hardware  

•  Disadvantages 
– Cannot happen without specialised hardware  

– Need to make the hardware interface visible to the guest  

•  We just lost extensibility  
– Different hardware, different drivers  

•  Guest needs to cater for all possible drivers (not only the real ones, but the 
virtual ones as well!) 

•  Too much reliance on the hardware for software-related operations (e.g., 
scheduling, multiplexing, etc.)  
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Device emulation	

•  Just as before, introduce an abstraction layer 

– Per class of device, e.g., for all disk drives 

–  Implement the abstraction for different instances of the device e.g., 
drivers for disk interfaces, types of disk (HDD, solid state, …) 

•  Advantages 

– Device isolation 

– Stability: guest needs to operate just as before 

– Devices can be moved freely and/or reconfigured 

– No special hardware; all at the monitor level 

•  Disadvantages 

– The drivers need to be in the monitor or the host 

– Potentially slow: path from guest to device is longer 

– Possibility of duplicate effort: different drivers for the guest, different 
drivers for host 
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Paravirtualisation	

•  The solution most contemporary virtual machine monitors use 
•  Effectively, reverse the direction of the communication 

–  Instead of trapping guest calls and emulating them by translating them 
for the host 

•  Expose the monitor and allow guest to make monitor calls 

•  Implement guest-specific drivers 

•  Implement the drivers once for each device at the monitor 

•  Advantages 

– Monitor now becomes simpler (and simple usually equals fast) 

– No duplication 

•  Disadvantages 

– We still need drivers, but now drivers for the guest 

– Bootstrapping becomes an issue: can't host a guest operating system 
until there are drivers available 
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The design of VMWare ESX 2.04 ���
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The hybrid design of the Xen hypervisor	
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Summary	

•  Introduced virtualisation 
•  Discussed why it is necessary to use virtualisation 

– Abstraction of hardware from software 

– Ability to emulate other environments from specific CPUs and operating 
systems 

•  Presented different ways to virtualise various aspect of a computing 
system 

– Kernel, memory, devices 

•  Showed architectures used in contemporary virtualisation offerings 


