Extreme Computing

Data streams and low latency processing
DATA STREAM BASICS
What is a data stream?

• Large data volume, likely structured, arriving at a very high rate
 – Potentially high enough that the machine cannot keep up with it
• Not (only) what you see on youtube
 – Data streams can have structure and semantics, they’re not only audio or video

• Definition (Golab and Ozsu, 2003)
 – A data stream is a real-time, continuous, ordered (implicitly by arrival time of explicitly by timestamp) sequence of items. It is impossible to control the order in which items arrive, nor it is feasible to locally store a stream in its entirety.
Why do we need a data stream?

• Online, real-time processing

• Potential objectives
 – Event detection and reaction
 – Fast and potentially approximate online aggregation and analytics at different granularities

• Various applications
 – Network management, telecommunications
 Sensor networks, real-time facilities monitoring
 – Load balancing in distributed systems
 – Stock monitoring, finance, fraud detection
 – Online data mining (click stream analysis)
Example uses

- Network management and configuration
 - Typical setup: IP sessions going through a router
 - Large amounts of data (300GB/day, 75k records/second sampled every 100 measurements)
 - Typical queries
 - What are the most frequent source-destination pairings per router?
 - How many different source-destination pairings were seen by router 1 but not by router 2 during the last hour (day, week, month)?

- Stock monitoring
 - Typical setup: stream of price and sales volume
 - Monitoring events to support trading decisions
 - Typical queries
 - Notify when some stock goes up by at least 5%
 - Notify when the price of XYZ is above some threshold and the price of its competitors is below than its 10 day moving average
Structure of a data stream

- Infinite sequence of items (elements)
- One item: structured information, i.e., tuple or object
- Same structure for all items in a stream
- Timestamping
 - Explicit: date/time field in data
 - Implicit: timestamp given when items arrive
- Representation of time
 - Physical: date/time
 - Logical: integer sequence number
Database management vs. data stream management

- Data stream management system (DSMS) at multiple observation points
 - Voluminous streams-in, reduced streams-out
- Database management system (DBMS)
 - Outputs of data stream management system can be treated as data feeds to database
DBMS vs. DSMS

DBMS
- Model: persistent relations
- Relation: tuple set/bag
- Data update: modifications
- Query: transient
- Query answer: exact
- Query evaluation: arbitrary
- Query plan: fixed

DSMS
- Model: transient relations
- Relation: tuple sequence
- Data update: appends
- Query: persistent
- Query answer: approximate
- Query evaluation: one pass
- Query plan: adaptive
Windows

- Mechanism for extracting a finite relation from an infinite stream
- Various window proposals for restricting processing scope
 - Windows based on ordering attributes (e.g., time)
 - Windows based on item (record) counts
 - Windows based on explicit markers (e.g., punctuations) signifying beginning and end
 - Variants (e.g., some semantic partitioning constraint)
Ordering attribute based windows

- Assumes the existence of an attribute that defines the order of stream elements/records (e.g., time)

- Let T be the window length (size) expressed in units of the ordering attribute (e.g., T may be a time window)

\[t_i - t_i' = T \]

- Sliding window

\[t_{i+1} - t_i = T \]

- Tumbling window
Count-based windows

- Window of size N elements (sliding, tumbling) over the stream
- Problematic with non-unique timestamps associated with stream elements
- Ties broken arbitrarily may lead to non-deterministic output
- Potentially unpredictable with respect to fluctuating input rates
 - But dual of time based windows for constant arrival rates
 - Arrival rate λ elements/time-unit, time-based window of length T, count-based window of size N; $N = \lambda T$
Punctuation-based windows

• Application-inserted “end-of-processing”
 – Each next data item identifies “beginning-of-processing”
• Enables data item-dependent variable length windows
 – Examples: a stream of auctions, an interval of monitored activity
• Utility in data processing: limit the scope of operations relative to the stream
• Potentially problematic if windows grow too large
 – Or even too small: too many punctuations
Putting it all together: architecting a DSMS
STREAM MINING
Data stream mining

- Numerous applications
 - Identify events and take responsive action in real time
 - Identify correlations in a stream and reconfigure system
- Mining query streams: Google wants to know what queries are more frequent today than yesterday
- Mining click streams: Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Big brother
 - Who calls whom?
 - Who accesses which web pages?
 - Who buys what where?
 - All those questions answered in real time
- We will focus on frequent pattern mining
Frequent pattern mining

• Frequent pattern mining refers to finding patterns that occur more frequently than a pre-specified threshold value
 – Patterns refer to items, itemsets, or sequences
 – Threshold refers to the percentage of the pattern occurrences to the total number of transactions
 • Termed as support
• Finding frequent patterns is the first step for association rules
 – $A \rightarrow B$: A implies B
• Many metrics have been proposed for measuring how strong an association rule is
 – Most commonly used metric: confidence
 – Confidence refers to the probability that set B exists given that A already exists in a transaction
 • $\text{confidence}(A \rightarrow B) = \frac{\text{support}(A \wedge B)}{\text{support}(A)}$
Frequent pattern mining in data streams

• Frequent pattern mining over data streams differs from conventional one
 – Cannot afford multiple passes
 • Minimised requirements in terms of memory
 • Trade off between storage, complexity, and accuracy
 • You only get one look
 • Frequent items (also known as heavy hitters) and itemsets are usually the final output
• Effectively a counting problem
 – We will focus on two algorithms: lossy counting and sticky sampling
The problem in more detail

- **Problem statement**
 - Identify all items whose current frequency exceeds some support threshold s (e.g., 0.1%)
Lossy counting in action

• Divide the incoming stream into windows
First window comes in

- At window boundary, adjust counters
Next window comes in

- At window boundary, adjust counters
Lossy counting algorithm

- Deterministic technique; user supplies two parameters
 - Support s; error ε
- Simple data structure, maintaining triplets of data items e, their associated frequencies f, and the maximum possible error Δ in f : (e, f, Δ)
- The stream is conceptually divided into buckets of width $w = 1/\varepsilon$
 - Each bucket labelled by a value N/w where N starts from 1 and increases by 1
- For each incoming item, the data structure is checked
 - If an entry exists, increment frequency
 - Otherwise, add new entry with $\Delta = b_{current} - 1$ where $b_{current}$ is the current bucket label
- When switching to a new bucket, all entries with $f + \Delta < b_{current}$ are released
Lossy counting observations

• How much do we undercount?
 – If current size of stream is N
 – …and window size is $1/\varepsilon$
 – …then frequency error \leq number of windows, i.e., εN

• Empirical rule of thumb: set $\varepsilon = 10\%$ of support s
 – Example: given a support frequency $s = 1\%$,
 – …then set error frequency $\varepsilon = 0.1\%$

• Output is elements with counter values exceeding $sN - \varepsilon N$

• Guarantees
 – Frequencies are underestimated by at most εN
 – No false negatives
 – False positives have true frequency at least $sN - \varepsilon N$

• In the worst case, it has been proven that we need $1/\varepsilon \times \log(\varepsilon N)$ counters
Sticky sampling

- Create counters by sampling
- Maintain exact counts thereafter
Sticky sampling algorithm

- Probabilistic technique; user supplies three parameters
 - Support \(s \); error \(\varepsilon \); probability of failure \(\delta \)
- Simple data structure, maintaining pairs of data items \(e \) and their associated frequencies \(f : (e, f) \)
- The sampling rate decreases gradually with the increase in the number of processed data elements
- For each incoming item, the data structure is checked
 - If an entry exists, increment frequency
 - Otherwise sample the item with the current sampling rate
 - If selected, add new entry; else ignore the item
- With every change in the sampling rate, toss a coin for each entry
 - Decreasing the frequency of the entry for each unsuccessful coin toss
 - If frequency goes down to zero, release the entry
Sticky sampling observations

• For a finite stream of length N
• Sampling rate $= \frac{2}{N\epsilon} \times \log \left(\frac{1}{s\delta} \right)$
 – δ is the probability of failure—user configurable
• Same guarantees with lossy counting, but probabilistic
• Same rule of thumb as lossy counting, but with a probabilistic and user configurable failure probability δ
• Generalisation to infinite streams of unknown N
 – (probabilistically) expected number of counters is $= \frac{2}{\epsilon} \times \log \left(\frac{1}{s\delta} \right)$
 – Independent of N

• Comparison
 – Lossy counting is deterministic; sticky sampling is probabilistic
 – In practice, lossy counting is more accurate
 – Sticky sampling extends to infinite streams with same error guarantees as lossy counting
STORM AND LOW-LATENCY PROCESSING
Low latency processing

• Similar to data stream processing, but with a twist
 – Data is streaming into the system (from a database, or a network stream, or an HDFS file, or …)
 – We want to process the stream in a distributed fashion
 – And we want results as quickly as possible

• Numerous applications
 – Algorithmic trading: identify financial opportunities (e.g., respond as quickly as possible to stock price rising/falling
 – Event detection: identify changes in behaviour rapidly

• Not (necessarily) the same as what we have seen so far
 – The focus is not on summarising the input
 – Rather, it is on “parsing” the input and/or manipulating it on the fly
The problem

• Consider the following use-case
 • A stream of incoming information needs to be summarised by some identifying token
 – For instance, group tweets by hash-tag; or, group clicks by URL;
 – And maintain accurate counts
 • But do that at a massive scale and in real time
 • Not so much about handling the incoming load, but using it
 – That's where latency comes into play
• Putting things in perspective
 – Twitter's load is not that high: at 15k tweets/s and at 150 bytes/tweet we're talking about 2.25MB/s
 – Google served 34k searches/s in 2010: let's say 100k searches/s now and an average of 200 bytes/search that's 20MB/s
 – But this 20MB/s needs to filter PBs of data in less than 0.1s; that's an EB/s throughput
A rough approach

- Latency
 - Each point 1 – 5 in the figure introduces a high processing latency
 - Need a way to transparently use the cluster to process the stream

- Bottlenecks
 - No notion of locality
 - Either a queue per worker per node, or data is moved around
 - What about reconfiguration?
 - If there are bursts in traffic we need to shutdown, reconfigure and redeploy
Storm

• Started up as backtype; widely used in Twitter
• Open-sourced (you can download it and play with it!)
 – http://storm-project.net/
• On the surface, Hadoop for data streams
 – Executes on top of a (likely dedicated) cluster of commodity hardware
 – Similar setup to a Hadoop cluster
 • Master node, distributed coordination, worker nodes
 • We will examine each in detail
• But whereas a MapReduce job will finish, a Storm job—termed a topology—runs continuously
 – Or rather, until you kill it
Storm topologies

• A Storm topology is a graph of computation
 – Graph contains nodes and edges
 – Nodes model processing logic (i.e., transformation over its input)
 – Directed edges indicate communication between nodes
 – No limitations on the topology; for instance one node may have more than one incoming edges and more than one outgoing edges

• Storm processes topologies in a distributed and reliable fashion
Streams, spouts, and bolts

- **Streams**
 - The basic collection abstraction: an unbounded sequence of tuples
 - Streams are transformed by the processing elements of a topology

- **Spouts**
 - Stream generators
 - May propagate a single stream to multiple consumers

- **Bolts**
 - Subscribe to streams
 - Streams transformers
 - Process incoming streams and produce new ones
Storm architecture

- Nimbus
- Zookeeper
- Supervisor
- Worker
- Bolt
- Spout
- Zookeeper
- Distributed coordination

Storm job topology
Task allocation

Storm cluster master node

www.inf.ed.ac.uk
From topology to processing: stream groupings

• Spouts and bolts are replicated in tasks, each task executed in parallel by a worker
 – User-defined degree of replication
 – All pairwise combinations are possible between tasks
• When a task emits a tuple, which task should it send to?
• Stream groupings dictate how to propagate tuples
 – Shuffle grouping: round-robin
 – Field grouping: based on the data value (e.g., range partitioning)
Zookeeper: distributed reliable storage and coordination

- **Design goals**
 - Distributed coordination service
 - Hierarchical name space
 - All state kept in main memory, replicated across servers
 - Read requests are served by local replicas
 - Client writes are propagated to the leader
 - Changes are logged on disk before applied to in-memory state
 - Leader applies the write and forwards to replicas

- **Guarantees**
 - Sequential consistency: updates from a client will be applied in the order that they were sent
 - Atomicity: updates either succeed or fail; no partial results
 - Single system image: clients see the same view of the service regardless of the server
 - Reliability: once an update has been applied, it will persist from that time forward
 - Timeliness: the clients’ view of the system is guaranteed to be up-to-date within a certain time bound
Putting it all together: word count

// instantiate a new topology
TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks
builder.setSpout("spout", new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks
builder.setBolt("split", new SplitSentence(), 8)
 .shuffleGrouping("spout"); // shuffle grouping for the output

// word counter with twelve tasks
builder.setBolt("count", new WordCount(), 12)
 .fieldsGrouping("split", new Fields("word")); // field grouping

// new configuration
Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks
// will be allocated round-robin to the three workers, each task
// running as a separate thread
conf.setNumWorkers(3);

// submit the topology to the cluster
StormSubmitter.submitTopology("word-count", conf, builder.createTopology());
Summary

- Introduced the notion of data streams and data stream processing
- Discussed the architecture of a data stream management system
 - Differences to a DBMS
 - Architectural choices
- Described use-cases and algorithms for stream mining
 - Lossy counting and sticky sampling
- Introduced frameworks for low-latency stream processing
 - Storm