
www.inf.ed.ac.uk

Extreme Computing	

Beyond MapReduce

www.inf.ed.ac.uk

Today’s agenda	

•  Making Hadoop more efficient
•  Tweaking the MapReduce programming model

•  Beyond MapReduce

www.inf.ed.ac.uk

MORE EXPRESSIVE PROCESSING
USING MAPREDUCE	

www.inf.ed.ac.uk

We’ve seen this before	

•  MapReduce is a step backward in database access

– Schemas are good

– Separation of the schema from the application is good

– High-level access languages are good

•  MapReduce is poor implementation

– Brute force and only brute force (no indexes, for example)

•  MapReduce is not novel

•  MapReduce is missing features

– Bulk loader, indexing, updates, transactions…

•  MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker	

www.inf.ed.ac.uk

Hadoop vs. RDBMS: grep	

SELECT	 *	 FROM	 Data	 WHERE	 field	 LIKE	 ‘%XYZ%’;	

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Vertica RDBMS Hadoop

70 1500

00

60
50
40
30
20
10

1250

1000

750

500

250

1 10 25 50 100 25 50 100

se
co

nd
s

se
co

nd
s

nodes nodes

535MB/node 1TB/cluster

www.inf.ed.ac.uk

Hadoop vs. RDBMS: select	

SELECT	 pageURL,	 pageRank	
FROM	 Rankings	 WHERE	 pageRank	 >	 X;	

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Vertica RDBMS Hadoop

160

0

120
100
80
60
40
20

1 10 25 50 100

se
co

nd
s

nodes

140

www.inf.ed.ac.uk

Hadoop vs. RDBMS: aggregation	

SELECT	 sourceIP,	 SUM(adRevenue)	
FROM	 UserVisits	 GROUP	 BY	 sourceIP;	

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Vertica RDBMS Hadoop

1200

0

1000
800
600
400
200

se
co

nd
s

nodes

2k groups160

0

120
100
80
60
40
20

1 10 25 50 100

se
co

nd
s

nodes

140

1 10 25 50 100

2.5M groups
1400

www.inf.ed.ac.uk

Hadoop vs. RDBMS: join	

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Vertica RDBMS Hadoop

1600

0

1200
1000
800
600
400
200

1 10 25 50 100

se
co

nd
s

nodes

1400

1800

www.inf.ed.ac.uk

Why?	

•  Schemas are a good idea

– Parsing fields out of flat text files is slow

– Schemas define a contract, decoupling logical from physical

•  Schemas allow for building efficient auxiliary structures

– Value indexes, join indexes, etc.

•  Relational algorithms have been optimised for the underlying system

– The system itself has complete control of performance-critical decisions

– Storage layout, choice of algorithm, order of execution, etc.

www.inf.ed.ac.uk

Alleviating schema absence: thrift	

•  Originally developed by Facebook, now an Apache project
•  Provides a Data Definition Language (DDL) with numerous language

bindings

– Compact binary encoding of typed structs

– Fields can be marked as optional or required

– Compiler automatically generates code for manipulating messages

•  Provides Remote Procedure Call (RPC) mechanisms for service definitions

•  Alternatives include protobufs and Avro

www.inf.ed.ac.uk

Thrift	

struct	 Tweet	 {	
	 1:	 required	 i32	 userId;	
	 2:	 required	 string	 userName;	
	 3:	 required	 string	 text;	
	 4:	 optional	 Location	 loc;	
}	
	
struct	 Location	 {	
	 1:	 required	 double	 latitude;	
	 2:	 required	 double	 longitude;	
}	

www.inf.ed.ac.uk

Storage layout: row vs. column stores	

R1

R2

R3

R4

Row store

Column store

www.inf.ed.ac.uk

Storage layout: row vs. column stores	

•  Row stores

– Easy to modify a record

– Might read unnecessary data when processing

•  Column stores

– Only read necessary data when processing

– Tuple writes require multiple accesses

www.inf.ed.ac.uk

Advantages of column stores	

•  Read efficiency

–  If only need to access a few columns, no need to drag around the rest
of the values

•  Better compression

– Repeated values appear more frequently in a column than repeated
rows appear

•  Vectorised processing

– Leveraging CPU architecture-level support

•  Opportunities to operate directly on compressed data

– For instance, when evaluating a selection; or when projecting a column

www.inf.ed.ac.uk

Why not in Hadoop?	

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

No reason why not

limitation would not help our goal of fast query pro-
cessing for a huge amount of disk scans on massively
growing data sets.

3) Limited by the page-level data manipulation inside a
traditional DBMS engine, PAX uses a fixed page as the
basic unit of data record organization. With such a fixed
size, PAX would not efficiently store data sets with a
highly-diverse range of data resource types of different
sizes in large data processing systems, such as the one
in Facebook.

III. THE DESIGN AND IMPLEMENTATION OF RCFILE

In this section, we present RCFile (Record Columnar File),
a data placement structure designed for MapReduce-based data
warehouse systems, such as Hive. RCFile applies the concept
of “first horizontally-partition, then vertically-partition” from
PAX. It combines the advantages of both row-store and
column-store. First, as row-store, RCFile guarantees that data
in the same row are located in the same node, thus it has
low cost of tuple reconstruction. Second, as column-store,
RCFile can exploit a column-wise data compression and skip
unnecessary column reads.

A. Data Layout and Compression

RCFile is designed and implemented on top of the Hadoop
Distributed File System (HDFS). As demonstrated in the
example shown in Figure 3, RCFile has the following data
layout to store a table:

1) According to the HDFS structure, a table can have
multiple HDFS blocks.

2) In each HDFS block, RCFile organizes records with
the basic unit of a row group. That is to say, all the
records stored in an HDFS block are partitioned into
row groups. For a table, all row groups have the same
size. Depending on the row group size and the HDFS
block size, an HDFS block can have only one or multiple
row groups.

Fig. 3: An example to demonstrate the data layout of RCFile
in an HDFS block.

3) A row group contains three sections. The first section is
a sync marker that is placed in the beginning of the row
group. The sync marker is mainly used to separate two
continuous row groups in an HDFS block. The second
section is a metadata header for the row group. The
metadata header stores the information items on how
many records are in this row group, how many bytes
are in each column, and how many bytes are in each
field in a column. The third section is the table data
section that is actually a column-store. In this section,
all the fields in the same column are stored continuously
together. For example, as shown in Figure 3, the section
first stores all fields in column A, and then all fields in
column B, and so on.

We now introduce how data is compressed in RCFile. In
each row group, the metadata header section and the table
data section are compressed independently as follows.

• First, for the whole metadata header section, RCFile uses
the RLE (Run Length Encoding) algorithm to compress
data. Since all the values of the field lengths in the same
column are continuously stored in this section, the RLE
algorithm can find long runs of repeated data values,
especially for fixed field lengths.

• Second, the table data section is not compressed as a
whole unit. Rather, each column is independently com-
pressed with the Gzip compression algorithm. RCFile
uses the heavy-weight Gzip algorithm in order to get
better compression ratios than other light-weight algo-
rithms. For example, the RLE algorithm is not used since
the column data is not already sorted. In addition, due
to the lazy decompression technology to be discussed
next, RCFile does not need to decompress all the columns
when processing a row group. Thus, the relatively high
decompression overhead of the Gzip algorithm can be
reduced.

Though currently RCFile uses the same algorithm for all
columns in the table data section, it allows us to use different
algorithms to compress different columns. One future work
related to the RCFile project is to automatically select the
best compression algorithm for each column according to its
data type and data distribution.

B. Data Appending

RCFile does not allow arbitrary data writing operations.
Only an appending interface is provided for data writing in
RCFile because the underlying HDFS currently only supports
data writes to the end of a file. The method of data appending
in RCFile is summarized as follows.

1) RCFile creates and maintains an in-memory column

holder for each column. When a record is appended,
all its fields will be scattered, and each field will
be appended into its corresponding column holder. In
addition, RCFile will record corresponding metadata of
each field in the metadata header.

2) RCFile provides two parameters to control how many
records can be buffered in memory before they are

RCFile

www.inf.ed.ac.uk

Some small steps forward	

•  MapReduce is a step backward in database access:

– Schemas are good

– Separation of the schema from the application is good

– High-level access languages are good

•  MapReduce is poor implementation

– Brute force and only brute force (no indexes, for example)

•  MapReduce is not novel

•  MapReduce is missing features

– Bulk loader, indexing, updates, transactions…

•  MapReduce is incompatible with DMBS tools

✔	

✔	

✔	

Source: Blog post by DeWitt and Stonebraker

?

?

www.inf.ed.ac.uk

Digging further into Pig: basics	

•  Sequence of statements manipulating relations (aliases)
•  Data model

– atoms

–  tuples

– bags

– maps

–  json

www.inf.ed.ac.uk

Pig: common operations	

•  LOAD: load data
•  FOREACH … GENERATE: per tuple processing

•  FILTER: discard unwanted tuples

•  GROUP/COGROUP: group tuples

•  JOIN: relational join

www.inf.ed.ac.uk

Pig: GROUPing	

(1,	 2,	 3)	
(4,	 2,	 1)	
(8,	 3,	 4)	
(4,	 3,	 3)	
(7,	 2,	 5)	
(8,	 4,	 3)	

A	 =	 LOAD	 'myfile.txt’	 AS	 (f1:	 int,	 f2:	 int,	 f3:	 int);	

X	 =	 GROUP	 A	 BY	 f1;	

(1,	 {(1,	 2,	 3)})	
(4,	 {(4,	 2,	 1),	 (4,	 3,	 3)})	
(7,	 {(7,	 2,	 5)})	
(8,	 {(8,	 3,	 4),	 (8,	 4,	 3)})	

www.inf.ed.ac.uk

Pig: COGROUPing	

A:	
(1,	 2,	 3)	
(4,	 2,	 1)	
(8,	 3,	 4)	
(4,	 3,	 3)	
(7,	 2,	 5)	
(8,	 4,	 3)	

B:	
(2,	 4)	
(8,	 9)	
(1,	 3)	
(2,	 7)	
(2,	 9)	
(4,	 6)	
(4,	 9)	

X	 =	 COGROUP	 A	 BY	 f1,	 B	 BY	 $0;	

(1,	 {(1,	 2,	 3)},	 {(1,	 3)})	
(2,	 {},	 {(2,	 4),	 (2,	 7),	 (2,	 9)})	
(4,	 {(4,	 2,	 1),	 (4,	 3,	 3)},	 {(4,	 6),(4,	 9)})	
(7,	 {(7,	 2,	 5)},	 {})	
(8,	 {(8,	 3,	 4),	 (8,	 4,	 3)},	 {(8,	 9)})	

www.inf.ed.ac.uk

Pig UDFs	

•  User-defined functions:

– Java

– Python

– JavaScript

– Ruby

•  UDFs make Pig arbitrarily extensible

– Express core computations in UDFs

– Take advantage of Pig as glue code for scale-out plumbing

www.inf.ed.ac.uk

previous_pagerank	 =	 LOAD	 ‘$docs_in’	 USING	 PigStorage()	 	
	 	 AS	 (url:	 chararray,	 pagerank:	 float,	
	 	 	 	 	 	 links:{link:	 (url:	 chararray)});	
	
outbound_pagerank	 =	 FOREACH	 previous_pagerank	 	
	 	 GENERATE	 pagerank	 /	 COUNT(links)	 AS	 pagerank,	 	
	 	 FLATTEN(links)	 AS	 to_url;	
	
new_pagerank	 =	 	
	 	 	 	 FOREACH	 (COGROUP	 outbound_pagerank	
	 	 	 	 BY	 to_url,	 previous_pagerank	 BY	 url	 INNER)	
	 	 	 	 GENERATE	 group	 AS	 url,	 	
	 	 	 	 	 	 	 (1	 –	 $d)	 +	 $d	 *	 SUM(outbound_pagerank.pagerank)	 AS	
pagerank,	
	 	 	 	 	 	 	 FLATTEN(previous_pagerank.links)	 AS	 links;	
	 	 	 	 	 	 	 	 	
STORE	 new_pagerank	 INTO	 ‘$docs_out’	 USING	 PigStorage();	
	

PageRank in Pig	

From: http://techblug.wordpress.com/2011/07/29/pagerank-implementation-in-pig/	

www.inf.ed.ac.uk

#!/usr/bin/python	
from	 org.apache.pig.scripting	 import	 *	
P	 =	 Pig.compile("""	 Pig	 part	 goes	 here	 """)	
	
params	 =	 {	 ‘d’:	 ‘0.5’,	 ‘docs_in’:	 ‘data/
pagerank_data_simple’	 }	
	
for	 i	 in	 range(10):	
	 	 	 out	 =	 "out/pagerank_data_"	 +	 str(i	 +	 1)	
	 	 	 params["docs_out"]	 =	 out	
	 	 	 Pig.fs("rmr	 "	 +	 out)	
	 	 	 stats	 =	 P.bind(params).runSingle()	
	 	 	 if	 not	 stats.isSuccessful():	
	 	 	 	 	 	 raise	 ‘failed’	
	 	 	 params["docs_in"]	 =	 out	

Iterative computation	

From: http://techblug.wordpress.com/2011/07/29/pagerank-implementation-in-pig/

www.inf.ed.ac.uk

Hadoop + DBs = HadoopDB	

•  Why not have the best of both worlds?

– Parallel databases focused on performance

– Hadoop focused on scalability, flexibility, fault tolerance

•  Key ideas:

– Co-locate a RDBMS on every slave node

– To the extent possible, push down operations into the DB

Source: Abouzeid et al. (2009) HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. VLDB.

www.inf.ed.ac.uk

Master node

HadoopDB Architecture	

Source: Abouzeid et al. (2009) HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. VLDB.

Node 1

TaskTracker

DB
Data
Node

Node 2

TaskTracker

DB
Data
Node

Node n

TaskTracker

DB
Data
Node

MapReduce
Framework

JobTracker

HDFS

NameNode

InputFormat implementations

Database Connector

Hadoop core

C
atalog

D
ata

Loader

SMS planner SQL query MapReduce Job

Task with
InputFormat

www.inf.ed.ac.uk

MapReduce underperforms in iterative algorithms	

•  Java verbosity
•  Hadoop task startup time

•  Stragglers

•  Needless data shuffling

•  Checkpointing at each iteration

www.inf.ed.ac.uk

HaLoop architecture	

Source: Bu et al. (2010) HaLoop: Efficient Iterative Data Processing on Large Clusters. VLDB.

Fi
le

 s
ys

te
m

Fr
am

ew
or

k
A

pp
lic

at
io

n

Local file system

Distributed file system

Task queue

Task scheduler

Loop control

Task tracker

Caching Indexing

Task 1.1 Task 1.2

Task 2.1 Task 2.2

Task 3.1 Task 3.2

Job 1 Job 2 Job 3

Same as Hadoop Modified from Hadoop New in HaLoop

Remote communication Local communication

www.inf.ed.ac.uk

Standard iterative MapReduce	

Hadoop MapReduce

Application
Map function

Reduce function

Stop condition

Map Reduce Map Reduce

Job

Stop?

Yes

Job

No

Source: Bu et al. (2010) HaLoop: Efficient Iterative Data Processing on Large Clusters. VLDB.

www.inf.ed.ac.uk

HaLoop: loop-aware scheduling	

Source: Bu et al. (2010) HaLoop: Efficient Iterative Data Processing on Large Clusters. VLDB.

HaLoop

Application
Map function

Reduce function

Stop condition

Map Reduce Map Reduce

No

Job

Stop?

Submit Yes

www.inf.ed.ac.uk

HaLoop: optimizations	

•  Loop-aware scheduling
•  Caching

– Reducer input for invariant data

– Reducer output speeding up convergence checks

Source: Bu et al. (2010) HaLoop: Efficient Iterative Data Processing on Large Clusters. VLDB.

www.inf.ed.ac.uk

Pregel: computational model	

•  Based on Bulk Synchronous Parallel (BSP)

– Computational units encoded in a directed graph

– Computation proceeds in a series of supersteps

– Message passing architecture

•  Each vertex, at each superstep:

– Receives messages directed at it from previous superstep

– Executes a user-defined function (modifying state)

– Emits messages to other vertices (for the next superstep)

•  Termination:

– A vertex can choose to deactivate itself

–  Is “woken up” if new messages received

– Computation halts when all vertices are inactive

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

www.inf.ed.ac.uk

Pregel	

superstep t

superstep t+1

superstep t+2

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

www.inf.ed.ac.uk

Pregel: implementation	

•  Master-Slave architecture

– Vertices are hash partitioned (by default) and assigned to workers

– Everything happens in memory

•  Processing cycle

– Master tells all workers to advance a single superstep

– Worker delivers messages from previous superstep, executing vertex
computation

– Messages sent asynchronously (in batches)

– Worker notifies master of number of active vertices

•  Fault tolerance

– Checkpointing

– Heartbeat/revert

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

www.inf.ed.ac.uk

Pregel: PageRank	

class	 PageRankVertex	 :	 public	 Vertex<double,	 void,	 double>	 {	
public:	
	 	 virtual	 void	 Compute(MessageIterator*	 msgs)	 {	
	 	 	 	 if	 (superstep()	 >=	 1)	 {	
	 	 	 	 	 	 double	 sum	 =	 0;	
	 	 	 	 	 	 for	 (;	 !msgs-‐>Done();	 msgs-‐>Next())	
	 	 	 	 	 	 	 	 sum	 +=	 msgs-‐>Value();	
	 	 	 	 	 	 *MutableValue()	 =	 0.15	 /	 NumVertices()	 +	 0.85	 *	 sum;	
	 	 	 	 }	
	
	 	 	 	 if	 (superstep()	 <	 30)	 {	
	 	 	 	 	 	 const	 int64	 n	 =	 GetOutEdgeIterator().size();	
	 	 	 	 	 	 SendMessageToAllNeighbors(GetValue()	 /	 n);	
	 	 	 	 }	 else	 {	
	 	 	 	 	 	 VoteToHalt();	
	 	 	 	 }	
	 	 }	
};	

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

www.inf.ed.ac.uk

www.inf.ed.ac.uk

YARN: Hadoop version 2.0	

•  Hadoop limitations:

– Can only run MapReduce

– What if we want to run other distributed frameworks?

•  YARN = Yet-Another-Resource-Negotiator

– Provides API to develop any generic distribution application

– Handles scheduling and resource request

– MapReduce (MR2) is one such application in YARN

www.inf.ed.ac.uk

YARN: architecture	

www.inf.ed.ac.uk

Summary	

•  Making Hadoop more efficient

– Leveraging lessons learned from database systems, or extending
node-level functionality

•  Tweaking the MapReduce programming model

– Higher-level programming

•  Beyond MapReduce

– Catering for different data models and use cases

– Extending the runtime for generality

