" THE UNIVERSITY of EDINBURGH

2@: informatics

Extreme Computing

The ACID model versus the BASE
methodology

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

& informatics

Methodology versus model?

* An apples and oranges debate that has gripped the cloud community
— A methodology is a way of doing something

* For example, there is a methodology for starting fires without
matches using flint and other materials

— A model is really a mathematical construction
* We give a set of definitions (i.e., fault-tolerance)
* Provide protocols that provably satisfy the definitions

* Properties of model, hopefully, translate to application-level
guarantees

www.inf.ed.ac.uk

HE UNIVERSITY of EDINBURGH

nformatics

The ACID model

* A model for correct behavior of databases

* Name was coined (no surprise) in California in 60’s
— Atomicity
 Either it all succeeds, or it all fails

* Even if transactions have multiple operations, the rest of the world will
either see all effects simultaneously (success), or no effects (failure)

— Consistency

* Atransaction that runs on a correct database leaves it in a correct state
— Isolation

* It looks as if each transaction runs all by itself.

* Transactions are shielded from other transactions running concurrently
— Durability

* Once a transaction commits, updates cannot be lost or rolled back

* Everything is permanent

www.inf.ed.ac.uk

V
4> THE UNIVERSITY of EDINBURGH

‘&) informatics

ACID as a methodology

* We teach it all the time in our database courses
* We use it when developing systems
— We write transactional code

Begin signals the

— System executes this code in an all-or-nothing way /| start of the

/

Begn

ktem pbyee t= Em p Record(Tony”);

tstatus = ‘retied”;

Vv custom erc:c AccountR ep=="Tony’[
cAccountRep = ‘Sally’;

1

Comm i

transaction

Body of the
transaction performs
reads and writes
atomically

Commit asks the database to make the
effects permanent. If a crash happens before
this, or if the code executes Abort, the

transaction rolls back and leaves no trace

. THE UNIVERSITY of EDINBURGH

- informatics

Why 1s ACID helpful?

* Developer does not need to worry about a transaction leaving some sort of
partial state

— For example, showing Tony as retired and yet leaving some customer
accounts with him as the account rep

* Similarly, a transaction cannot glimpse a partially completed state of some
concurrent transaction

— Eliminates worry about transient database inconsistency that might
cause a transaction to crash

— Analogous situation

* Thread A is updating a linked list and thread B tries to scan the list
while A is running

* What if A breaks a link?
* B is left dangling, or following pointers to nowhere-land

www.inf.ed.ac.uk

44> THE UNIVERSITY of EDINBURGH

) informatics

Serial and serialisable execution

* A serial execution is one in which there is at most one transaction running
at a time, and it always completes via commit or abort before another starts

* Serialisability is the illusion of serial execution

— Transactions execute concurrently and their operations interleave at the
level of database accesses to primary data

— Yet a database is designed to guarantee an outcome identical to some
serial execution: it masks concurrency

* This is achieved though some combination of locking and snapshot
isolation

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

All ACID implementations have costs

* Locking mechanisms involve competing for locks
— Overheads associated with maintaining locks
— Overheads associated with duration of locks
— Overheads associated with releasing locks on Commit

* Snapshot isolation mechanisms uses fine-grained locking for updates
— But also have an additional version based way of handing reads
— Forces database to keep a history of each data item

— As a transaction executes, picks the versions of each item on which it
will run

These costs are not so small

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

Dangers of replication

* The costs of transactional ACID model on replicated data in typical settings
broadly fall into one of two cases

— Embarrassingly easy ones

* Transactions do not conflict at all (like Facebook updates by a
single owner to a page that others might read but never change)

— Conflict-prone ones

* Transactions that sometimes interfere and in which replicas could
be left in conflicting states if care is not taken to order and/or
reconcile the updates

* Scalability for the latter case will be terrible

* Recommended solutions involve sharding and coding transactions to
favour the first case

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

Are we doomed?

* The Dangers of Replication and a Solution (Jim Gray, Pat Helland,
Dennis Shasha. Proc. 1996 ACM SIGMOD.)

* They do a paper-and-pencil analysis

— Estimate how much work will be done as transactions execute, roll-
back

— Count costs associated with doing/undoing operations and also delays
due to lock conflicts that force waits

* Show that even under very optimistic assumptions slowdown will be O(n?)
In size of replica set (shard)

* If approach is naive, O(n®) slowdown is possible!

www.inf.ed.ac.uk

o
<,

) EQ . THE UNIVERSITY of EDINBURGH
5 Eﬂ{ t e f io
WN: INTOrMarics

RrasS

THE BASE METHODOLOGY

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

This motivates BASE

* Proposed by eBay researchers

— Found that many eBay employees came from transactional database
backgrounds and were used to the transactional style of thinking

— But the resulting applications did not scale well and performed poorly
on their cloud infrastructure

* Goal was to guide that kind of programmer to a cloud solution that
performs much better

— BASE reflects experience with real cloud applications
— Opposite of ACID

www.inf.ed.ac.uk
D. Pritchett. BASE: An Acid Alternative. ACM Queue, July 28, 2008.

. THE UNIVERSITY of EDINBURGH

- informatics

Not a model, but a methodology

* BASE involves step-by-step transformation of a transactional application
into one that will be far more concurrent and less rigid

— But it does not guarantee ACID properties

— Argument parallels (and actually cites) CAP: they believe that ACID is
too costly and often, not needed

BASE stands for Basically Available Soft-State Services with Eventual
Consistency

www.inf.ed.ac.uk

s> THE UNIVERSITY of EDINBURGH

3 informatics

Terminology

* Basically Available: Like CAP, goal is to promote rapid responses.

— BASE papers point out that in data centers partitioning faults are very rare and
are mapped to crash failures by forcing the isolated machines to reboot

— But we may need rapid responses even when some replicas can’'t be contacted
on the critical path

* Soft state service: Runs in first tier
— Cannot store any permanent data
— Restarts in a clean state after a crash

— To remember data either replicate it in memory in enough copies to never lose
all in any crash or pass it to some other service that keeps hard state

* Eventual consistency: OK to send optimistic answers to the external client
— Could use cached data (without checking for staleness)
— Could guess at what the outcome of an update will be
— Might skip locks, hoping that no conflicts will happen
— Later, if needed, correct any inconsistencies in an offline cleanup activity

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

How BASE 1s used

* Start with a transaction, but remove Begin/Commit

— Now fragment it into steps that can be done in parallel, as much as
possible

— ldeally each step can be associated with a single event that triggers
that step: usually, delivery of a multicast

* Leader that runs the transaction stores these events in a message queuing
middleware system

— Like an email service for programs
— Events are delivered by the message queuing system
— This gives a kind of all-or-nothing behavior

www.inf.ed.ac.uk

1V
4> THE UNIVERSITY of EDINBURGH

\e¥): informatics

BASE 1n action

{ tstatus = “retied”; J :
Begn
ktem pbyee t= Em p Record(Tony”);
tstatus = ‘retied”;
\/ V custom erc:c AccountR ep==‘Tony’’[
V cusiom erc: cAccountRep = ‘Saly’”;
c AccountR ep=="Tony’’[:
cAccountRep = ‘Sally”; Comm 1

www.inf.ed.ac.uk

BASE 1n action

tstatus = ‘retired”;

Start

V custom erc: tstatus = ‘fetied”; v cusomerc:
c AccountR ep=="Tony”[l c AccountR ep== ‘Tony”[]
c AccounRep = ‘Sally”; cAccountRep = ‘Saly”;

* BASE suggestions
— Consider sending the reply to the user before finishing the operation

— Modify the end-user application to mask any asynchronous side-effects that might
be noticeable

* In effect, weaken the semantics of the operation and code the application to
work properly anyhow

— Developer ends up thinking hard and working hard!

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

Before BASE... and after

* Code was often much too slow
— Poor scalability
— End-users waited a long time for responses

* With BASE
— Code itself is way more concurrent, hence faster

— Elimination of locking, early responses, all make end-user experience
snappy and positive

— But we do sometimes notice oddities when we look hard

www.inf.ed.ac.uk

44> THE UNIVERSITY of EDINBURGH

) informatics

BASE side-effects

* Suppose an eBay auction is running fast and furious
— Does every single bidder necessarily see every bid?
— And do they see them in the identical order?

* Clearly, everyone needs to see the winning bid

* But slightly different bidding histories should not hurt much, and if this makes eBay

10x faster, the speed may be worth the slight change in behaviour!

* Upload a YouTube video, then search for it
— You may not see it immediately

* Change the initial frame (they let you pick)
— Update might not be visible for an hour

* Access a FaceBook page when your friend says she has posted a photo from the

party
— You may see an

X

www.inf.ed.ac.uk

4> THE UNIVERSITY of EDINBURGH

- informatics

AMAZON DYNAMO

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

BASE 1n action: Dynamo

* Amazon was interested in improving the scalability of their shopping cart
service

* A core component widely used within their system
— Functions as a kind of key-value storage solution

— Previous version was a transactional database and, just as the BASE
folks predicted, was not scalable enough

— Dynamo project created a new version from scratch

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

&) informatics

Dynamo approach

* Amazon made an initial decision to base Dynamo on a Chord-like
Distributed Hash Table (DHT) structure

— Recall Chord and its O(log n) routing ability
* The plan was to run this DHT in tier 2 of the Amazon cloud system

— One instance of Dynamo in each Amazon data centre and no linkage
between them

* This works because each data centre has ownership for some set of
customers and handles all of that person’s purchases locally

— Coarse-grained sharding/partitioning

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

The challenge

* Amazon quickly had their version of Chord up and running, but then
encountered a problem

* Chord was not very tolerant to delays

— If a component gets slow or overloaded, the hash table was heavily
iImpacted

* Yet delays are common in the cloud (not just due to failures, although
failure is one reason for problems)

* So how could Dynamo tolerate delays?

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

The Dynamo 1dea

* The key issue is to find the node on which to store a key-value tuple, or
one that has the value

* Routing can tolerate delay fairly easily

— Suppose node K wants to use the finger table to route to node K+2' and
gets no acknowledgement

— Then Dynamo just tries again with node K+2

— This works at the cost of a slight stretch in the routing path, in the rare
cases when it occurs

www.inf.ed.ac.uk

Vg4>
@) > THE UNIVERSITY of EDINBURGH

Y informatics

& “\)‘*

What if the actual owner node fails?

* Suppose that we reach the point at which the next hop should take us to
the owner for the hashed key

* But the target does not respond

— It may have crashed, or have a scheduling problem (overloaded), or be
suffering some kind of burst of network loss

— All common issues in Amazon’s data centres

* Then they do the Get/Put on the next node that actually responds even if
this is the wrong one

— Chord will repair

www.inf.ed.ac.uk

4> THE UNIVERSITY of EDINBURGH

R - informatics

Dynamo example

* Ideally, this strategy works
perfectly

— Chord normally replicates a
key-value pair on a few nodes,
so we would expect to see
several nodes that know the
current mapping: a shard

— After the intended target
recovers, the repair code will
bring it back up to date by
copying key-value tuples

* But sometimes Dynamo jumps
beyond the target range and ends
up in the wrong shard

lookup(K19) @ N99

www.inf.ed.ac.uk

Vg4>
@) THE UNIVERSITY of EDINBURGH

Y informatics

EoMEELS

Consequences of misrouting (and miss-storing)

* If this happens, Dynamo will eventually repair itself
— But meanwhile, some slightly confusing things happen

* Put might succeed, yet a Get might fail on the key

* Could cause user to buy the same item twice

— This is a risk they are willing to take because the event is rare and the
problem can usually be corrected before products are shipped in
duplicate

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

- informatics

Werner Vogels on BASE

* He argues that delays as small as 100ms have a measurable impact on
Amazon’s income!

— People wander off before making purchases
— S0 snappy response is king

* True, Dynamo has weak consistency and may incur some delay to achieve
consistency

— There isn’t any real delay bound

— But they can hide most of the resulting errors by making sure that
applications which use Dynamo don’t make unreasonable assumptions
about how Dynamo will behave

www.inf.ed.ac.uk

I3
. THE UNIVERSITY of EDINBURGH

\& informatics

Summary

* BASE is a widely popular alternative to transactions
— Basically Available Soft-State Services with Eventual Consistency
* Used (mostly) for first tier cloud applications
* Weakens consistency for faster response, later cleans up
— Consistency is eventual, not immediate
* eBay, Amazon Dynamo shopping cart both use BASE

www.inf.ed.ac.uk

	Slide 1
	Methodology versus model?
	The ACID model
	ACID as a methodology
	Why is ACID helpful?
	Serial and serialisable execution
	All ACID implementations have costs
	Dangers of replication
	Are we doomed?
	The base methodology
	This motivates BASE
	Not a model, but a methodology
	Terminology
	How BASE is used
	BASE in action
	BASE in action
	Before BASE… and after
	BASE side-effects
	Amazon dynamo
	BASE in action: Dynamo
	Dynamo approach
	The challenge
	The Dynamo idea
	What if the actual owner node fails?
	Dynamo example
	Consequences of misrouting (and miss-storing)
	Werner Vogels on BASE
	Summary

