Algorithms for MapReduce

Admin

Assignment 1 released

Cluster admin on vacation. . .in Florida:
“Greetings from hurricane hit winter haven”

Takeaways
Design MapReduce computations in pseudocode
Optimize a computation, with motivation
Patterns used

Less Important

These specific examples

Problem: Comparing Output

Alice's Word Counts Bob's Word Counts

a 20 i 13 why 12 a 20 hi 2
hi 2 the 31 why 12 i 13
the 31

Problem: Comparing Output

Alice’'s Word Counts

a 20 i 13 why 12 a 20
hi 2 the 31 why 12
a 20 the 31 i 13
a 20 the 31 i 13
hi 2 why 12
hi 2 why 12

Send words to a consistent place

hi
i
the

Bob's Word Counts

2
13
31

Problem: Comparing Output

Alice’'s Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20 hi 2
hi 2 the 31 why 12 i 13
the 31

Map

a 20 the 31 i 13

a 20 the 31 i 13

hi 2 why 12

hi 2 why 12

Reduce

Send words to a consistent place: reducers

Problem: Comparing Output

Alice’'s Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20 hi 2
hi 2 the 31 why 12 13
the 31
Map
a 20 the 31 13 Unordered
a 20 the 31 i 13 Alice/Bob
hi 2 why 12
hi 2 why 12
Reduce

Send words to a consistent place: reducers

Comparing Output Detail

(word, count) > (word, student, count) !

Reduce: Verify both values are present and match.
Deduct marks from Alice/Bob as appropriate.

'The mapper can tell Alice and Bob apart by input file name.

Comparing Output Detail

(word, count) > (word, student, count) !
Partition: By word
Sort: By werd(word, student)

Reduce: Verify both values are present and match.
Deduct marks from Alice/Bob as appropriate.

Exploit sort to control input order

'The mapper can tell Alice and Bob apart by input file name.

Problem: Comparing Output

Alice’'s Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20 hi 2
hi 2 the 31 why 12 i 13
the 31

Map

a 20 the 31 i 13 Gl

a 20 the 31 i 13 Alice/Bob

hi 2 why 12

hi 2 why 12

Reduce

Send words to a consistent place: reducers

Pattern: Exploit the Sort

Without Custom Sort
Reducer buffers all students in RAM
_—

Might run out of RAM

With Custom Sort

TA appears first, reducer streams through students.
Constant reducer memory.

We will give higher marks to scalable solutions
(even if yours runs on small data)

Problem: Averaging

We're given temperature readings from cities:

Key Value
San Francisco 22
Edinburgh 14
Los Angeles 23
Edinburgh 12
Edinburgh 9
Los Angeles 21

Find the average temperature in each city.

(city, temperature) — (city, temperature)

Reduce: Count, sum temperatures, and divide.

Problem: Averaging

We're given temperature readings from cities:

Key Value
San Francisco 22
Edinburgh 14
Los Angeles 23
Edinburgh 12
Edinburgh 9
Los Angeles 21

Find the average temperature in each city.

(city, temperature) — (city, temperature)
Combine: Same as reducer?
Reduce: Count, sum temperatures, and divide.

Problem: Averaging

We're given temperature readings from cities:

Key Value
San Francisco 22
Edinburgh 14
Los Angeles 23
Edinburgh 12
Edinburgh 9
Los Angeles 21

Find the average temperature in each city.

(city, temperature) — (city, count = 1, temperature)
Combine: Sum count and temperature fields.
Reduce: Sum count, sum temperatures, and divide.

Pattern: Combiners

Combiners reduce communication by aggregating locally.

Many times they are the same as reducers (i.e. summing).

... but not always (i.e. averaging).

5‘0\“"‘3 THE UNIVERSITY of EDINBURGH
@ informatics

PROGRAMMING FOR A DATA
CENTRE

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Programming for a data centre

» Understanding the design of warehouse-sized computes
— Different techniques for a different setting
— Requires quite a bit of rethinking

» MapReduce algorithm design

— How do you express everything in terms of map (), reduce(),
combine(), and partition()?

— Are there any design patterns we can leverage?

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

y- informatics

Building Blocks

| s | | s ¥

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics

Storage Hierarchy

One server
DRAM: 16GB, 100ns, 20GB/s
Disk: 2TB, 10ms, 200MB/s

Local DRAM

Rack Switch

Local rack (80 servers)

DRAM: 1TB, 300us, 100MB/s
Disk: 160TB, 11ms, 100MB/s

Cluster (30 racks)
DRAM: 30TB, 500us, 10MB/s
Disk: 4.80PB, 12ms, 10MB/s

Funny story about sense of scale...

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Scaling up vs. out

* No single machine is large enough

— Smaller cluster of large SMP machines vs. larger cluster of commodity
machines (e.g., 8 128-core machines vs. 128 8-core machines)

* Nodes need to talk to each other!
— Intra-node latencies: ~100 ns
— Inter-node latencies: ~100 us

» Let's model communication overhead

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Modelling communication overhead

» Simple execution cost model:
— Total cost = cost of computation + cost to access global data
— Fraction of local access inversely proportional to size of cluster

— n nodes (ignore cores for now)
I ms+fx[100ns x (1/n) + 100 us x (1 - 1/n)]
¢ Light communication: f =1
* Medium communication: f=10

* Heavy communication: f=100
* What is the cost of communication?

www.inf.ed.ac.uk

.. THE UNIVERSITY of EDINBURGH

- informatics

Overhead of communication

normalised execution cost
S

w

n

Light communication —l—

Medium communication
Heavy communication ««+ 3+

100 120

40 60 80
number of cores

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Seeks vs. scans

» Consider a 1TB database with 100 byte records
— We want to update 1 percent of the records

» Scenario 1: random access
— Each update takes ~30 ms (seek, read, write)
— 108 updates = ~35 days

» Scenario 2: rewrite all records
— Assume 100MB/s throughput
— Time = 5.6 hours(!)

» Lesson: avoid random seeks!

www.inf.ed.ac.uk

5‘“‘”“"1\ THE UNIVERSITY of EDINBURGH
‘) informatics

Numbers everyone should know

L1 cache reference

L2 cache reference

Read 1 MB sequentially from memory 250,000 ns
10,000,000 ns

www.inf.ed.ac.uk

. RSy EONBURGH
@ informatics

DEVELOPING ALGORITHMS

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

) informatics
Optimising computation
» The cluster management software orchestrates the computation

= But we can still optimise the computation

— Just as we can write better code and use better algorithms and data
structures

— At all times confined within the capabilities of the framework
» Cleverly-constructed data structures
— Bring partial results together
« Sort order of intermediate keys
— Control order in which reducers process keys
* Partitioner
— Control which reducer processes which keys
* Preserving state in mappers and reducers
— Capture dependencies across multiple keys and values

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Preserving State

Mapper object

one object per task
state

setup APl initialization hool

one call per input
key-value pair

one call per
intermediate key

cleanup API cleanup hoo

Reducer object

state

setup

reduce

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Importance of local aggregation

« Ideal scaling characteristics:
— Twice the data, twice the running time
— Twice the resources, half the running time
* Why can’t we achieve this?
— Synchronization requires communication
— Communication kills performance
» Thus... avoid communication!
— Reduce intermediate data via local aggregation
— Combiners can help

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Word count: baseline

class Mapper
method map(docid a, doc d)
for all term t in d do
emit(t, 1);

class Reducer

method reduce(term t, counts [cl, c2, ..

sum = 0;
for all counts c in [c1, c2, ..] do
sum = sum + C;

emit(t, sum);

www.inf.ed.ac.uk

. THE UNIVERSITY of EDINBURGH

y- informatics

Word count: introducing combiners

class Mapper

method map(docid a, doc d)
H = associative_array(term - count;)
for all term t in d do
Ht]++;
for all term t in H[t] do
emit(t, H[t]);

Local aggregation reduces further computation

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Word count: introducing combiners

class Mapper
method initialise()

H = associative_array(term - count);

method map(docid a, doc d)
for all term t in d do
H{t]++;

method close()
for all term t in H[t] do
emit(t, H[t]);

Compute sums across documents!

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Design pattern for local aggregation

 In-mapper combining

— Fold the functionality of the combiner into the mapper by preserving
state across multiple map calls

* Advantages

— Speed

— Why is this faster than actual combiners?
» Disadvantages

— Explicit memory management required

— Potential for order-dependent bugs

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

) informatics
Combiner design

» Combiners and reducers share same method signature
— Effectively they are map-side reducers
— Sometimes, reducers can serve as combiners
— Often, not...
* Remember: combiners are optional optimisations
— Should not affect algorithm correctness
— May be run 0, 1, or multiple times

» Example: find average of integers associated with the same key

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Algorithm design: term co-occurrence

» Term co-occurrence matrix for a text collection
— M =N x N matrix (N = vocabulary size)

— M;: number of times / and j co-occur in some context
(for concreteness, let's say context = sentence)

* Why?
— Distributional profiles as a way of measuring semantic distance
— Semantic distance useful for many language processing tasks

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

y- informatics
Using MapReduce for large counting problems

» Term co-occurrence matrix for a text collection is a specific instance of a
large counting problem

— A large event space (number of terms)

— A large number of observations (the collection itself)

— Goal: keep track of interesting statistics about the events
» Basic approach

— Mappers generate partial counts

— Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

)- informatics

First try: pairs

« Each mapper takes a sentence:
— Generate all co-occurring term pairs
— For all pairs, emit (a, b) — count

* Reducers sum up counts associated with these pairs
» Use combiners!

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics

Pairs: pseudo-code

class Mapper
method map(docid a, doc d)
for all w in d do
for all u in neighbours(w) do

emit(pair(w, u), 1);

class Reducer
method reduce(pair p, counts [cl, c2, ..])
sum = 0;
for all c in [c1, c2, ..] do
sum = sum + C;

emit(p, sum);

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Analysing pairs

» Advantages
— Easy to implement, easy to understand

» Disadvantages
— Lots of pairs to sort and shuffle around (upper bound?)
— Not many opportunities for combiners to work

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics

Another try: stripes

« Idea: group together pairs into an associative array

(a, b) » 1
(a, ¢) »2
(a, d) » 5 a-»>{b:1, c:t 2, d:5,e:3, f:2}
(a, e) » 3
(a, f) » 2

» Each mapper takes a sentence:
— Generate all co-occurring term pairs
— For each term, emit a — { b: count,, c: count,, d: count, ... }

» Reducers perform element-wise sum of associative arrays

a~»>{b:1, d: 5, e: 3}
a-»{b:1, c:2, d: 2, f: 2}
a-={b: 2, c:2, d: 7, e: 3, f: 2}

Cleverly-constructed data structure brings together partial results
www.inf.ed.ac.uk

- THE UNIVERSITY of EDINBURGH

- informatics
Stripes: pseudo-code

class Mapper

method map(docid a, doc d)
for all w in d do
H = associative_array(string - integer);
for all u in neighbours(w) do
Hlul++;

emit(w, H);

class Reducer
method reduce(term w, stripes [H1, H2, ..])
H; = assoiative_array(string - integer);
for all H in [H1, H2, ..] do
sum(Hg, H); // sum same-keyed entries

emit(w, Hg);

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Stripes analysis

» Advantages
— Far less sorting and shuffling of key-value pairs
— Can make better use of combiners
» Disadvantages
— More difficult to implement
— Underlying object more heavyweight
— Fundamental limitation in terms of size of event space

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices
4000

T T T

T
“stripes" approach m
"pairs" approach @
3500 |

3000
2500
2000 -

1500 +

3
b}
c
o
o
@
2
o
£
o
£
c
c
E]

1000 |~

500

0 L | I |
0 20 40 60 80 100

percentage of the APW corpus

Cluster size: 38 cores inf.ed K
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), www.int.ed.ac.u
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

THE UNIVERSITY of EDINBURGH

informatics
Effect of cluster size on "stripes" algorithm
relative size of EC2 cluster
1x 2 3x 4x
5000 : : : .
4000 4x
w
el
8 £y
o 3000 [x T
(7] [
@ o}
o &
£ o
= 2
@ 2000 [X ®
c &
S [
o
2
1000 - 1x
0 1 Il 1 1 1 1 Il
10 20 30 40 50 60 70 80 90

size of EC2 cluster (number of slave instances)

www.inf.ed.ac.uk

Distributed Grep

Mapper Keep lines matching “secret”
Reducer NONE

Tip: save bandwidth by skipping reducers entirely.

Efficiency Tips

Avoid sending data over the network

Balance work across machines

Use constant/bounded memory in each machine
Combiners can help (but not if the keys are unique)
Use secondary sort to order data for you

Less computation in mappers or reducers

THE UNIVERSITY of EDINBURGH

informatics
Debugging at scale

» Works on small datasets, won’t scale... why?
— Memory management issues (buffering and object creation)
— Too much intermediate data
— Mangled input records
» Real-world data is messy!
— There’s no such thing as consistent data
— Watch out for corner cases
— Isolate unexpected behavior, bring local

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Summary

* Further delved into computing using MapReduce
* Introduced map-side optimisations
» Discussed why certain things may not work as expected

» Need to be really careful when designing algorithms to deploy over large
datasets

» What seems to work on paper may not be correct when distribution/
parallelisation kick in

www.inf.ed.ac.uk

