
It ,;hould also be noted that overpacking is allowed
in the above described optimal histogram matching prob-
lem. If overpacking is not allowed and the monotone
propelty is dropped, then the problem becomes the
classical bin-packing problem [4] which is known 'to be
NP-complete.

Subsequent to this paper, Chow and Kou found a
dynamic programming algorithm for optimal histogram
matching which also has time complexity O(kl x k2)
[1].

Acknowledgments. The authors are indebted to G.
Manacher for his many helpful suggestions and com-
ments, and to the referee who pointed out an error in an
earlier version of this paper.

Received June 1977; revised April 1978

References
1. Chow, W.M., and Kou, L.T. Matching two digital pictures. IBM
Res. Rep. RC6870, IBM T.J. Watson Res. Ctr., Yorktown Heights,
N.Y., Nov. 1977.
2. Karp, R.M. Reducibility among combinatorial problems. In
Complexity of Computer Computations, R.E. Miller and J.W.
Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-103.
3. Rosenfeld, A., and Kak, A.C. Digital Picture Processing.
Academic Press, New York, 1976, pp. 173-175.
4. Yao, A. Concrete computational complexity. Ph.D. Diss., U. of
Illinois at Urbana-Champaign, 1975.

Programming
Techniques

S.L. Graham, R.L. Rivest
Editors

Counting Large
Numbers of Events in
Small Registers
Robert Morris
Bell Laboratories, Murray Hill, N.J.

It is possible to use a small counter to keep
approximate counts of large numbers. The resulting
expected error can be rather precisely controlled. An
example is given in which 8-bit counters (bytes) are
used to keep track of as many as 130,000 events with a
relative error which is substantially independent of the
number n of events. This relative error can be expected
to be 24 percent or less 95 percent of the time (i.e. o =
n/8). The techniques could be used to advantage in
multichannel counting hardware or software used for
the monitoring of experiments or processes.

Key Words and Phrases: counting
CR Categories: 5.11

84O

A Counting Problem

An n-bit register can ordinarily only be used to count
up to 2 n - I. I ran into a programming situation that
required using a large number of counters to keep track
of the number of occurrences of many different events.
The counters were 8-bit bytes and because of the limited
amount of storage available on the machine being used,
it was not possible to use 16-bit counters. Using an
intermediate size counter on a byte-oriented machine
would have considerably increased both the complexity
and running time of the program.

The resulting limitation of the maximum count to
255 led to inaccuracies in the results, since the most
common events were recorded as having occurred 255
times when in fact some of them were much more

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's address: Bell Laboratories, Murray Hill, NJ 07974.
© 1978 ACM 0001-0782/78/1000-0840 $00.75

Communications October 1978
of Volume 21
the ACM Number 10

frequent. I looked in many directions for a solution to
the problem with the following constraints in mind.
Running time was important because the program was
already painfully slow. There was no significant addi-
tional space available in the machine. On the other hand,
precise counts of the events were not necessary since the
processing was statistical in nature and a reasonable
margin of error was tolerable.

where n is the number of events that have occurred. Zero
value corresponds to zero events.

Suppose that in the midst of counting, we have the
value v stored in the register. Whenever we get another
event, we attempt to modify the contents of the register
in the most appropriate way. All we have is the value v.
As far as we know, the best estimate of the number of
events so far is

n~ = e ~ -- 1

A Simple Solution

The most obvious way to count more than 255 events
in an 8-bit register is to count only every other event.
This can be done with a modest amount of error by
simply flipping a coin at every event to decide whether
or not to make the count. Not only is the expected error
small, but it can be precisely described. In particular, if
the number of events that have occurred is n, then the
expected value for the value v in the counter is n /2 and
the standard deviation is

so that by the time 400 events have occurred, v = 200
and o = 10. One can expect that 95 percent of the time,
the number of events estimated from 2v is within 40 of
the actual count, an error of 10 percent.

This approach can be extended in the obvious way
to count yet larger numbers of events with correspond-
ingly increased expectations of error by simply using an
appropriately weighted coin. This appealing approach
did not solve my problem because even though the
absolute error was relatively small, the relative error was
intolerably high for small counts. In fact if one event had
occurred, I was guaranteed a 100 percent error.

A mixed approach is possible and overcomes this
problem by keeping actual counts up to some preset
number and using the coin-flipping approach above that
point. It is a generalization of this approach that led to
the successful solution to my problem.

A Generalization

Suppose that instead of trying to keep track of the
number n of events or of some constant multiple of n,
that we keep in the register the logarithm of the number
of events and devise some sort of approach as was set
out above. Then if the value (which is a logarithm)
suffers from a given absolute error, then the number of
events which this logarithm reflects is affected only by a
relative error. This is what is generally desired.

The simplest approach that uses this idea is to pro-
ceed as follows: The value v stored in the register is
imagined to represent

v(n) = log(l + n)

so that the number of events including the current one
is d. The value that we would like to return to the
register is

v' = log(l + e ~)

but this is not in general an integer and we cannot just
truncate or round the quantity for fear of accumulating
serious error. Instead we let v' = k + f where k is an
integer and 0 ~< f < l, and return either the value k or
the value k + 1 to the register as the new value of v with
appropriately chosen probabilities so that the expected
value of v is correct.

The correct thing to do is to compute

I/A = n~-i -- n~.

In every case of interest, A will be between 0 and 1 and
so we can ignore the possibility of an integer part. We
then obtain a random number r from a random number
generator uniformly distributed in the interval 0 ~< r <
1 and

i f A > r , s e t v = v + 1
i fA~<r , s e t v = v .

It is easy to prove that we have not by this procedure
disturbed the expected value of the contents of the
register. To prove this, observe that the random proce-
dure substitutes for the correct value v' either

v with probability 1 - A , or
v + 1 with probability A.

Then the expected value of n represented by the contents
of v is equal to

An~-m + (l -- A)n~ = A(n~+l - n~) + n,

e ~+1- l - e " + 1
= + n~

e~ (e - l)
= n o + 1.

After one event has occurred, the register contains
the value 1 with probability .59, or 0 with probability
.41. When we come to interpret this value we would
conclude that the number of events was

1.7 59 percent of the time, and
0 41 percent of the time.

The expected value in the register is correct, but the
actual value is way off.

841 Communications October 1978
of Volume 21
the ACM Number 10

We can jiggle the parameters of the method so that
a count of one results in a register value of one and then
the random rounding procedure has no effect on the first
count. The function

v = log(n + 1)/log(2)

has just the property we want. This formula is of course
independent of the base of the logarithms.

A General Solution

The class of functions that I have used and analyzed
are the functions

u(n) = log O + n/a) / log(1 + l / a)

where the parameter a controls both the max imum count
that can be held in the register and the expected error.
The constant log O + 1/a) in the denominator serves
only to force n = l to correspond to u = 1 so that the
random procedures have no effect on the first count and
counts of 0 and 1 are represented exactly. It is in this
way that good relative accuracy is preserved for small
counts. The max imum value n that can be represented
using the parameter a can be calculated from the inverted
formula

n, = a((1 + 1 / a f - 1).

The expected error in the estimated value of n after n
counts can be calculated from the formula

o z = n (n - 1)/2a.

This formula can be proved by induction on n.
Let us inspect the performance of this method using

the parameter a = 30. The largest value that can be
represented in an 8-bit counter is about 130,000. The
standard deviation o is approximately equal to n/8 which
implies that the relative error is nearly independent of n
and that 95 percent of the time the relative error will be
less than 24 percent. Larger values of a will lead to
smaller max imum counts and, of course, to smaller
relative error.

There is no need to compute any of the logarithms or
powers during the counting process. A table containing
the 255 values of A can be precomputed by the formula
Ay = (a / (a + 1)) j and accessed when a new count is
made. The random number generator can be of the
simplest sort and no great demands are made on its
properties.

The distribution of errors is somewhat asymmetric
for small counts, but as n becomes larger, the distribution
closely approximates the normal distribution. In the
example above where a -- 30, the normal error curve
gives a useful estimate of the error distribution for counts
greater than about 20.

Received June 1975; revised December 1977

842

Programming
Techniques

S.L. Graham, R.L. Rivest
Editors

An Analysis of
Algorithms for the
Dutch National Flag
Problem
Colin L. McMaster
University of California

Solutions to the Dutch National Flag Problem have
been given by Dijkstra [1] and Meyer [3]. Dijkstra
starts with a simple program and arrives at an improved
program by refinement. Both of the algorithms given by
Dijkstra are shown to have an expected number of
swaps which is 2N + 0(1) and that these values differ at
most by 1 of a swap and asymptotically by ¼ of a swap.
The algorithm of Meyer is shown to have expected
swap complexity ~N.

Key Words and Phrases: algorithmic analysis,
Dutch National Flag Problem, refinement, structured
programming

CR Categories: 4.0, 5.24, 5.25, 5.3

Introduction

Dijkstra [1] has defined a problem which he calls the
Problem of the Dutch National Flag. It may be stated as
follows. There is a row of N buckets numbered f rom 1
to N. The buckets are arranged in numerical order with
bucket 1 on the left and bucket N on the right. Each
bucket contains exactly one pebble and each pebble is

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Research sponsored by Joint Services Electronics Program Grant
F 44620-76-C-0100 and National Science Foundation Grant MCS 76-
15036.

Author's address: Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720.
© 1978 ACM 0001-0782/78/0000-0842 $00.75

Communications October 1978
of Volume 21
the ACM Number 10

