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Abstract 
We investigate algorithms for evaluating sliding window 

joins over pairs of unbounded streams. We introduce a unit-
time-basis cost model to analyze the expected performance of 
these algorithms. Using this cost model, we propose strategies 
for maximizing the efficiency of processing joins in three 
scenarios. First, we consider the case where one stream is much 
faster than the other. We show that asymmetric combinations of 
join algorithms, (e.g., hash join on one input, nested-loops join 
on the other) can outperform symmetric join algorithm 
implementations. Second, we investigate the case where system 
resources are insufficient to keep up with the input streams. We 
show that we can maximize the number of join result tuples 
produced in this case by properly allocating computing 
resources across the two input streams. Finally, we investigate 
strategies for maximizing the number of result tuples produced 
when memory is limited, and show that proper memory 
allocation across the two input streams can result in 
significantly lower resource usage and/or more result tuples 
produced.   

1. Introduction 
Recently, the database research community has begun 

focusing its attention on query processing over unbounded, 
continuous input streams rather than fixed-size stored data sets. 
In such environments, many assumptions made in traditional 
query processing are no longer valid, and new problems arise. 
One of the fundamental questions that naturally arise is how to 
process joins over unbounded streams. In the limit, processing a 
join over unbounded input streams requires unbounded memory, 
since every tuple in one infinite stream must be compared with 
every tuple in the other. Clearly, this is not practical. In view of 
this, we expect that in practice most join queries over 
unbounded input streams will contain �window predicates� that 
restrict the number of tuples that must be stored for each stream. 
The purpose of this paper is to investigate the problems that 
arise when dealing with window join predicates and present 
possible solutions. 

A window join takes as input two streams of tuples, say 
Stream A and Stream B, along with window sizes for both 
Stream A and Stream B, as shown in Figure 1. The output is also 
a stream of tuples, consisting of all pairs of tuples (a,b), where a 
is from Stream A, b is from Stream B, such that (i) a and b 
satisfy the join predicate, and (ii) a was in the active window for 

Stream A at the same time that b was in the active window for 
Stream B. 

Sliding window joins arise in a number of applications. One 
class of applications deals with correlating information from 
different sources about the same entities. For example, we may 
wish to correlate stock price movements with news stories 
suspected of influencing the price. Or, in a surveillance 
application, we may want to correlate cell phone traffic with 
email traffic. 

Another class of applications deals with tracking entities 
through a network of sensors. In this sort of application, each 
sensor produces a stream recording the entities as they pass the 
sensor; the "join" of two sensors' streams records traffic between 
the sensors. Examples of this sort of application include tracking 
network packets through routers, or generating "click stream" 
information about visits to multiple web sites, or even 
monitoring the progress of cars through tollbooths on the 
highway. 

In some applications, the "exact" window join is 
required. For example, if one is interested in tracking the 
movements of specific entities, it is probably unacceptable for 
the join to "drop" answer tuples. However, there are other 
applications for which an approximate answer might suffice. As 
an example of this kind of application, consider measuring the 
delay in traffic between two sensor nodes. In this case it may be 
acceptable to compute an average value by looking at a subset 
of the complete result. Indeed, if the system does not have 
sufficient resources to produce the complete result in a timely 
fashion, such an approximate but up-to-date average may be 
much more desirable than a delayed exact result.  

Assuming a sliding window join between streams A and B 
and a new arrival from stream A, then a summary of operations 
the query processor needs to carry out when evaluating the join 
is the following: 

1. Scan stream B�s window to find any matching tuples and 
propagate the result. 

2. Insert the new tuple into stream A�s window.  
3. Invalidate all expired tuples in stream A�s window. 

Though the steps seem simple enough, it turns out that their 
implementation can become complicated due to a mixture of 
traditional join processing problems and additional issues 
introduced by having to evaluate the join using a sliding 
window over unbounded streams. Questions that can make these 
problems evident are:  

1. Given the collection of existing join algorithms, how can 
they be applied to the problem at hand? None of the 
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previously published join algorithms has addressed the 
issue of invalidating parts of the input as time progresses. 

2. How can an optimizer decide which algorithm to use? The 
traditional metric of execution time to completion does not 
apply in a sliding window join scenario, since the inputs 
are infinite. 

3. The various input streams may have very different rates. 
Can a possible asymmetry in those rates be taken 
advantage of when choosing an evaluation algorithm? For 
instance, if one of the streams is much slower than the 
other, it may be possible to assign fewer resources to 
handle its inputs since they will not appear as frequently. 

4. Network links are able to shift data around at very high 
speeds. What happens if one of the inputs is so fast that the 
query processor cannot keep up with it? In such a scenario, 
and depending on the query semantics, it may be 
acceptable for the query processor to �drop� inputs so it is 
able to catch up with the streams and resort to approximate 
answers. 

5. If the query processor has limited computational and/or 
memory resources how should these resources be 
distributed among the streams? For instance, given a 
memory budget that is less than the total amount of 
memory needed to keep both windows in memory, how 
much memory should be allocated for each window?  

Our contributions towards answering all these questions and 
solving the problems they introduce are the following: 

• We classify window join scenarios on the basis of the 
limitations, if any, of the query processor. The limitations 
of the query processor can be either on its computational or 
on its memory resources. By having such a classification, 
we are able to focus on the important questions of each 
individual class. 

• Assuming that the query processor does not have any 
serious limitations on its computational and memory 
resources, the problem is mainly that of deciding on an 
efficient join evaluation algorithm. Since the traditional 
cardinality-based cost metric is not applicable, we present a 
unit-time basis cost model that focuses on the cost of 
handling a single individual input tuple of each input 
stream separately. Using this refined cost model, we show 
that, perhaps surprisingly, asymmetric streaming join 
algorithms can perform better than their symmetric 
counterparts. (By �asymmetric� we mean that, for example, 
the join operator might use nested loops for one input 
stream and hash join for the other.) 

• If the query processor has insufficient memory or 
computational resources, the focus shifts from cost 

estimation to resource allocation. In that respect, we 
present an analytical model that allows us to accurately 
estimate how computational and/or memory resources 
should be allocated to each input stream so that the 
algorithm�s throughput in terms of generated result tuples 
is maximized. 

• Addressing all of these issues in a unified manner, allows 
us to develop a powerful optimization framework for 
sliding window join queries, which, by conducting an 
experimental study, we prove to be correct and usable in 
practice.  

In summary, we propose using different join algorithms for 
each input to a streaming join (e.g., hash join for one input, 
nested loops join for the other.) In our experiments we show that 
this is important for the performance of sliding window 
joins. Furthermore, for approximate streaming window joins, we 
show that the careful allocation of computing and memory 
resources to the input streams can have a substantial impact on 
the performance of the algorithm.  

The rest of the paper is organized as follows: Section 2 
presents related work. Section 3 formulates the problems we 
will address in this paper. Section 4 describes our proposed cost 
model framework for sliding window joins. Section 5 validates 
our cost model framework and presents techniques for 
maximizing join efficiency. Finally, Section 6 gives our 
conclusions and identifies future work. 

2. Related Work 
As the Internet computing infrastructure matures, the data 

access paradigm considered by DBMS researchers is expanding 
from the traditional disk-oriented paradigm to include network 
stream-oriented applications. A large and growing body of 
research exists addressing the new problems that arise in such 
situations.  

One thrust in this body of research addresses problems 
arising when processing continuous queries [1][2]. The 
NiagaraCQ [2] system addresses scalability in terms of the 
number of queries by introducing predicate grouping and group 
optimization techniques. This system was built in the context of 
the Niagara Internet query system [3], which proposes a 
combining XML Internet searching and query processing. Such 
continuous query systems can utilize the analytical framework 

S tream  A  S tream  B  

C u rren t w indo w  
fo r 

S tream  A  

C u rren t w indo w  
fo r 

S tream  B

 
Figure 1. A window join scenario 

Tb stream B time window size. (used for logical windows) 
λb stream B arrival rate 

B number of tuples in window B. (in case of logical window, 
B = Tb λb) 

|B| number of hash buckets in window B. equivalent to the 
size of hash directory. 

B/|B| number of tuples in a hash bucket in window B  

N node size - number of tuples in a node (B-tree node, T-tree 
node)  

NKey(B) number of unique keys in window B 
M system memory size (number of tuples) 

Pd 
weight factor for search - cost of accessing one tuple in 
data structure d during search operation  

Id 
weight factor for update - cost of accessing one tuple in 
data structure d during update operation 

σb window B selectivity factor - 1/NKey(B)  
σ join selectivity factor - min(σa, σb) 

Table 1. Definition of terms used in cost model 
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proposed in this paper to extend their domain to include window 
join queries.  

Another relevant research area deals with adaptive query 
processing [4][5][6] and query scrambling [7]. In adaptive query 
processing, the goal is to identify at run time when sub-optimal 
performance arises because of differences between the estimated 
and measured selectivity factors in the query. When such a case 
is detected, the plan is dynamically altered in a way that is 
believed to enhance the overall performance. In query 
scrambling, the focus is on identifying and exploiting periods 
during which some input streams are blocked. Whenever an 
operator blocks, the execution frameworks pre-empts the 
operator, allowing other, non-blocked operators to execute. Both 
research directions are compatible with ours, as they can take 
advantage of our unit-time basis cost model framework and 
asymmetric window join processing algorithms. 

Streaming algorithms for join evaluation is another relevant 
research area.  The first such algorithm was the Symmetric Hash 
Join [8], which was optimized for in-memory performance, 
leading into thrashing on larger inputs. To rectify the situation 
XJoin was introduced [9]. Similar techniques are presented in 
[4] as well. A symmetric nested loops join was proposed in the 
context of online aggregation [10]. However, none of these 
works addressed the issues of performing window joins over 
unbounded input streams.  

Approximate answering techniques have become an 
important research issue in stream data management. Many 
stream applications deal with large number of data sources 
(often 105+ in sensor network applications) and long running 
queries. As a result, often times it is desirable to relax the query 
semantics to allow approximate answers and conserve resources. 
Query approximation can be done mainly in two ways: (i) by 
limiting the size of states maintained for queries and (ii) by 
reducing answer precision.  

One of the straightforward ways to limit the size of query 
states is to put sliding windows over input streams [28][29][17]. 
In fact, the sliding window constructs are often required as well 
by application semantics in which the size of window is 
explicitly specified in the query context. On the other hand, 
summary data structures�e.g. wavelets, sketches, histograms, 
and samples�have been used in the context of online 
aggregation in which rapid, approximate answers are often more 
desirable than exact, precise answers 
[30][31][32][33][34][35][36][37][38][39]. Although these 
structures yield reduced answer precision, the query processing 
cost with summary structures is significantly lower than that 
with original data. 

Interestingly, the summary structures are typically well 
suited to the problem of streaming data query processing, in 
which the number of data sources is large and data trend 
detection is often the focus rather than calculating exact 
answers. Recently a good deal of research has been conducted 
in this area: for example, stream sampling [27], updating 
summary data structures [36][40][37][41][38], and maintaining 
stream statistics [11]. Extending the proposed approximation 
techniques to support sliding window queries is an interesting 
area for future research. Babcock et al. presented a 
comprehensive survey in [25] on broad range of topics in stream 
data management, including the approximate answering.  

A good deal of research has been conducted on the general 
architecture of stream processing systems. Seshadri et al. 

developed a sequence data base system, SEQ [15][16].  In [12], 
Babu and Widom proposed architecture for a general purpose 
stream data management system and identified research 
problems in continuous query processing over streams. Tribeca 
is an example of special purpose stream database 
implementations [17]. Hancock [29] developed by Cortes et al. 
is a programming language based system that simplifies the 
programming work for extracting signatures from data streams. 
Tucker et al. presented a stream punctuation technique that 
allows stateful operators like join and aggregation to shed some 
of their expired states [26]. Other general stream-oriented 
database architecture works appear in the sensor network 
application domain [18][19].  Examples of this work include 
Berkeley�s Telegraph [13] and Cornell�s Cougar database 
project [14]. Zdonik et al. [28] proposed a stream monitoring 
system, Aurora, which also targeted to address the new class of 
problems that arise in dealing with the massive number of 
sensor data inputs and continuous queries.  

Finally, Viglas and Naughton proposed a rate based 
streaming query optimization framework [20]. Integrating the 
rate based optimization model with our unit time cost model is 
an interesting area for future research.   

3. Problem Formulation 
In this section, we will give a more precise description of the 

problem at hand. We will start with the assumptions of our 
computing environment, then present the parameters we use to 
model the environment and finally present what decisions we 
wish to be able to make given our modeling. 

Environment 

Our environment consists of infinite streams arriving into the 
system over network links. The tuples of the streams are 
buffered in memory or, if needed, spooled to disk for later 
processing. The streams are joined by either equality or 
inequality predicates. To efficiently evaluate the join, the 
system may build on-the-fly indices on top of the streams. We 
consider three such indices: hash indices, B+tree and T-tree 
indices. Additionally, we investigate the case of not building an 
index, if the cost of building and maintaining one is higher than 
that of simply scanning an in-memory buffer. 

Parameters 
The input streams enter the system through a network link. 

To capture that effect the network community has traditionally 
used the arrival rate of the input process. We are mostly 
interested in the effect the incoming rates have on the type of 
processing we have to perform, as in the case of one input 
stream being faster than the other. As we will see, this poses a 
number of interesting questions. 

A window predicate accompanies each query, which 
effectively limits the amount of buffering the system has to 
perform. There are two important parameters: the predicate 
semantics, and the window size. The first parameter allows us to 
use different index structures so we can efficiently answer it (for 
instance, hash indices can only handle equality joins.) 

The second parameter has to do with how much state per 
input we need to consider. We make a distinction between 
logical windows and physical windows (refer to [25] for more 



 4

rigorous discussions and examples on window semantics.) 
Logical windows are defined in terms of logical properties 
between the tuples of the two participating streams. For instance 
a logical window is �tuples arriving within the last 10 seconds.� 
Physical windows on the other hand, pose more rigid, physical 
constraints. For example, a physical window could instruct only 
the last one thousand tuples of a stream to be kept. On the other 
hand, these window constraints could either be explicit or 
implicit. The two previous constraints, for instance, are explicit. 
Had the two constraints been expressed in relative terms, as in 
�tuples arriving within 10 seconds of each other,� or �tuples 
arriving within one thousand arrivals from each other,� the 
window constraints would be implicit. 

Additionally, there are certain issues regarding the entity that 
provides the timing for the query. Timestamps could either be 
generated at acceptance time, meaning when the tuple is 
accepted for processing, or at generation time, meaning the time 
the tuple was sent from the remote source. We will use the 
acceptance time based timestamp semantics in this work. 

Finally, the system has a fixed number of computing and 
memory resources. Depending on the arrival rates of the input 
streams and the window size, there are four cases we need to 
consider: 

1. Unlimited computational, unlimited memory resources: the 
system has enough computational resources to handle the 
inputs, while the window sizes fit entirely in memory. 

2. Unlimited computational, limited memory resources: the 
system can still handle the computational part of the join 
evaluation without problems, but the memory buffer 
allocated to the query is not sufficient to keep the window 
size entirely in main-memory. 

3. Limited computational, unlimited memory resources: while 
the window size fits entirely in memory, there are restricted 
computational resources allocated to the query. In such a 
scenario, the system must decide how to efficiently use 
these resources. 

4. Limited computational, limited memory resources: the 
system has insufficient resources to deal with the incoming 
input rates (i.e., the speed of the streams is faster than what 
the system can handle) while at the same time there is not 
enough main memory to keep the window entirely in 
memory. 

Table 2. The four possible resource limitation scenarios 

This classification partitions our problem space into four 
quadrants, presented in Table 2.  

Decisions 
The main issue when dealing with queries over streams 

arriving at different rates is to maximize the throughput of the 
query. Given our modeling, there are two important decisions 
that need to be made: 

1. What would be the best way to allocate the fixed number 
of resources, both computational and memory? 

2. What would be the most efficient index structure so that 
the throughput is maximized given the resources allocated 
to the processing of the query? 

4. Estimating the Cost of Sliding Joins 
A window join query consumes unbounded input streams 

and produces outputs as long as the input continues to stream in. 
A traditional, cardinality-based, cost model for an evaluation 
algorithm is incapable of producing cost estimates in such a 
scenario since it estimates the time needed for a query to be run 
to completion, and the algorithm may never complete. 
Estimating the cost of a continuous window-join query, 
therefore, requires a new metric; we propose a unit-time-basis 
cost model as such a metric. 

4.1. Generic Framework for Unit-time Cost 
Estimation 

Consider the join of two windowed streams, A and B. Each 
tuple arrival in window A triggers three tasks: checking window 
B for joining tuples, inserting the tuple in window A and 
invalidating any expired tuples from that window. Given the 
notation of Table 1, a cost formula for that operation is shown 
below.  

( ( ) ( ) ( ))
( ( ) ( ) ( ))

A B a

b

C probe b insert a invalidate a
probe a insert b invalidate b
λ

λ
= + +

+ + +
*

           (1) 

The first factor of the formula measures the processing cost 
for stream A arrivals, while the second factor does the same for 
stream B arrivals. In each factor, each processing component 
(probe, insert, invalidate) is multiplied by the expected number 
of arrivals per unit time. Notice that this model captures the 
invalidation cost. Expired tuples must be invalidated to ensure 
that the window predicates are correctly evaluated and to avoid 
wasting memory. 

The choice of window semantics affects the invalidation 
cost. If the window is defined as �the last n tuples arrived� (i.e., 
a physical window), invalidation can be done simply by 
throwing away the oldest tuple. Alternatively, if the window is 
defined as �the last n seconds� (i.e., a logical window), the 
actual number of invalidated tuples may vary depending on how 
tuples are distributed in the input stream�e.g., uniform inter-
arrival time vs. Poison process. While addressing the differences 
between physical and logical windows is an interesting area for 
future work, it is not central to the contributions of this paper. In 
what follows, we will assume a physical window as the basis of 
our cost model. 

Another interesting point is that the cost of a single join 
operation can be divided into two independent subgroups of 
components, one for each input stream. We can rewrite 
Equation 1 as follows: 

( ( )) ( ( ) ( ))
( ( )) ( ( ) ( ))

A B A B A B

A B a b

A B b a

C C C
C probe b insert b invalidate b
C probe a insert a invalidate a

λ λ
λ λ

= +
= + +
= + +

* ( )

)

(

     (2) 

Rewriting the formula as above gives rise to two important 
observations: 

Memory Resources  Unlimited Limited 

Unlimited Section 5.1 Section 5.2.2 Computational 
Resources Limited Section 5.2.1 Section 5.2.3 
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1. The join operation is divided into two subcomponents, 
A)B and A(B. We call these subcomponents join 
directions.  

2. Each subcomponent can be evaluated independently of the 
other. The cost expression for CA)B is independent of the 
cost expression for CA(B . In practice, this means that we 
can use a different evaluation algorithm for each direction. 
For instance, we can use nested-loops to evaluate the A)B 
direction and a hash index to evaluate the A(B direction. 

The first cost formula (for CA)B) captures the aggregate cost 
of accessing window B in a single time unit. In a given time 
unit, aλ  tuples arrive in window A and these tuples must be 
joined with tuples in window B, hence ( ( ))a probe bλ . In the 
same time unit in window B, bλ  tuples arrive and one tuple gets 
expired per each tuple inserted, hence the second term, 

( ( ) ( ))b insert b invalidate bλ + . For illustration, suppose we 
perform a nested-loops join (NLJ) from A to B, and we estimate 
the cost of the (probe, insert, invalidate) operations in terms of 
the number of tuples touched. Then, the cost of probe(b) equals 
the size of window B (since the whole window must be scanned) 
and the insert(b) and invalidate(b) components are both equal to 
one (since, assuming physical window semantics, one tuple will 
be inserted and one tuple invalidated.) Notice that all three 
processing terms are determined without knowing the join 
algorithm chosen for the B join A direction.  

Counting the number of accessed tuples gives a reasonably 
accurate estimate. It is possible, however, to improve the 
estimate�s precision by refining the processing costs in terms of 
the physical operations that need to be carried out. Assuming 
the tuples of each window are stored in some data structure, 
probing the structure actually translates to �searching the 
structure for matches.� On the other hand, inserting and/or 
invalidating the structure translates to �updating the structure.� 
This allows us to look at different data structures in a unified 
manner. The cost of each processing term of Equation 2 can 
then be expressed in terms of the number of tuples accessed, 
multiplied by the physical operation�s per-tuple processing cost, 
as follows: 

( ) # tuples touched while probing window b
                 weight factor for search

( ) # tuples touched while inserting a tuple into 
                 window b weight factor for update

probe b

insert b

invali

=
×
=

×
( ) # tuples touched while invalidating a tuple 

                 from window b weight factor for update
date b =

×

 

In the following sections, we will further refine the cost 
formulas based on specific join algorithm implementations. In 
particular, we will address four possibilities: (i) performing a 
simple nested-loops join, (ii) building a hash index over the 
window, (iii) building a B+tree over the window and performing 
an index nested-loops join and (iv) building a T-tree index over 
the window and performing an index nested-loops join. 

4.2. Specific Implementations 

Cost of One-Way Nested Loops Join  

The cost formula for a nested-loops join from A to B is 
shown below (the terms used in cost model are described in 
Table 1): 

( ) 2
where weight factor for NLJ search
          weight factor for NLJ update

A B a n b n

n

n

C NJ B P I
P
I

λ λ= × + ×
=
=

)

                          (3) 

The term a nB Pλ ×  represents the number of tuples accessed 
to search for matches in window B, multiplied by the per-tuple 
access cost for search in an in-memory buffer. It is the NLJ-
specific equivalent of ( ( ))a probe bλ  in Equation 2. The 
invalidation and insertion costs are straightforward for the NLJ 
case. In a given time unit, bλ  tuples arrive from stream B and 
are inserted in its window, while the same number of tuples 
expire. The second term of the cost formula, 2 b nIλ × , 
represents this cost.  

Cost of One-Way Hash Join 

In the case of a traditional hash join, the cost of probe(b) and 
invalidate(b) in Equation 2 is a function of the hash bucket size 
in window B. A typical probe action requires one key hashing 
and as many key comparisons as there are tuples in the retrieved 
bucket. The invalidation task also performs similar actions. 
However, in window joins, tuples are expired in the order of 
arrivals. Taking advantage of this, we can keep the invalidation 
cost significantly lower by preserving arrival orders of tuples in 
each hash bucket, allowing us to directly identify the oldest 
tuple in a bucket without checking the timestamps of the 
bucket�s tuples. Now the invalidation cost is reduced to one key 
hashing and one tuple access cost. The modified HJ cost 
formula is shown below. 

( ) 2A B a h b h
BC HJ P I
B

λ λ= × + ×)                                 (4) 

As shown in Table 1, B B  represents the number of tuples 
in a hash bucket of window B. A typical in-memory hash table 
implementation can ensure the number of buckets remains close 
to the number of unique keys in the window. However, there is 
a tradeoff between memory utilization and performance 
improvement by keeping the size of bucket small. The constant 
weight factors, hP  and hI , represent the cost of accessing a 
single tuple in either a search or an update operation 
respectively. Later, we will show how to determine these weight 
factors. 

Cost of One-Way B+tree Index Nested Loops Join 

Hash indices may offer good performance on both probe and 
update operations. However, a hash index is only usable in 
equality join cases because the hash index does not preserve 
logical orders of key values. On the other hand, we can use NLJ 
for non-equality joins. The problem there is that though NLJ has 
a lower cost for update operations, it is not so efficient in terms 
of search operations. Consequently, it is unlikely to give 
reasonably good performance on search-heavy workloads. In 
other words, if stream A is much faster than stream B in a one-
way join A to B (i.e., more searches will be performed) the join 
performance will severely suffer from the high search cost. 
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To rectify this situation, we can build an index over window 
B that is more tailored toward search-heavy workloads and 
perform an index nested-loops join. We implemented two such 
index structures, B+tree and T-tree, for comparison. The cost 
formula for the B+tree index nested loops join is shown below. 

1 2

                           1 2

( ) ( log 1) log

2 ( log 1) log

A B a N b

b N b

BC BJ N P
N

B N I
N

λ

λ

+

+

  = × + × ×      
  + × × + × ×      

)

   (5) 

As defined in Table 1, N denotes the size of a B+tree node. 
In the first half of the formula, B N    represents the number 

of leaf nodes in a B+tree, and 1log N B N+      represents the 
number of non-leaf nodes that need to be searched from the root 
in order to reach the appropriate leaf. Hence, the height of a 
B+tree is 1log 1N B N+ +     . The search cost inside a 

B+tree node is equal to 2log N   , since we assume binary 
search is performed within the node. The B+tree index performs 
a search for a key at each node it visits on the way toward the 
leaf that contains the search key. Therefore, the cost of single 
probe is equal to the product of the tree�s height, 

1log 1N B N+ +     , and the search cost within a node, 

2log N   , multiplied by the B+tree search weight factor, bP . 
Similarly, for both insertion and invalidation, we need to 

search the tree first to identify the location of the tuple to be 
inserted or deleted in the tree. Once the location is identified, we 
insert or delete the new tuple. These insert and delete operations 
can cause structural change of the B+tree, which often includes 
nodes splitting, merging or contents of nodes shifted to 
neighboring nodes. The hidden cost of a B+tree update 
operation is captured in the update weight factor, bI . Hence, the 
cost of both insert and invalidation is equal to the number of 
tuples touched while searching for the insert or delete location, 
multiplied by the weight factor for updating the B+tree, bI . 

Cost of One-way T-tree Index Nested Loops Join 

The T-tree index was proposed by Lehman and Carey [21] as 
an index structure for main-memory databases. They have 
shown that the T-tree has better memory utilization and search 
and update performance than the B+tree. However, recent 
studies suggest that a careful in-memory B+tree implementation 
may outperform T-tree as the B+tree has better processor cache 
(e.g. L1, L2 cache) utilization characteristics [22][23]. The 
studies argue that this is particularly true with the modern 
hardware memory hierarchy where L1 and L2 caches are more 
than 100 times faster than main-memory.  

We do not expect, however, there will be a big difference 
(e.g. compared to difference between T-tree and Hash) in 
performance between the two index structures, since both index 
structures order tuples based on logical key values and perform 
tree-based search. Furthermore, as in the case of a B+tree, 
invalidation requires performing both search and update 
operations. The cost formula for the index nested-loops join 
using a T-tree index is shown below.  

2 2

                 2 2

( ) (1.5 ( log 1) log )

(2 1.5 ( log 1) log )

A B a t

b

BC TJ N P
N
B N I
N

λ

λ

  = × − + ×      
  + × × − + ×      

)

   (6) 

The T-tree is similar to the AVL tree in the way searches and 
updates are performed. The major difference is that the T-tree is 
allowed to have more than one data entry in a node. This 
substantially improves memory utilization of the T-tree, as the 
grouping of data entries eliminates a large number of pointers. 
One side effect of this is that each node now has a lower bound 
and an upper bound key and because of this, on average, it 
requires 1.5 key comparisons before it can determine which 
pointer to follow during searches. Unlike the B+tree, data 
entries are distributed to all nodes in the T-tree. Therefore, the 
number of nodes in a tree is B N   and the height of the tree is 

2log B N     . In the T-tree, a search key may be found in a 
non-leaf node. The average number of nodes that a look-up 
operation has to visit before finding the key is approximately 
one less than the height of a tree. Once a node that contains the 
key is found, it performs binary search to identify the matching 
data elements. Hence, the cost of single probe is 

2 2(1.5 ( log 1) log ) tB N N P× − + ×         . The cost formulas 
for insert and invalidation can be drawn similarly to the B+tree 
index case. 

Testbed Implementation 

We implemented the four data structures introduced in this 
section. In addition, we implemented a sliding window join 
operator that can accommodate asymmetric combinations of any 
of the four data structures. The operators were implemented in 
Java and run on Sun Microsystems� Java HotSpot Client VM 
1.4.0. Experiments were performed on an AMD Athlon XP 
1533Mhz machine with 1GB of memory, running Windows XP 
Professional.  

In all four join implementations, we maintained the arrival 
order of tuples in a sliding window by chaining them with one-
directional pointers. On each arrival of a new tuple, one tuple is 
removed from the tail and the new tuple is added onto the head 
of the chain. Then, the tuple removed from the chain is also 
removed from the index, if any.  

Estimating the Weight Factors 

So far, we have been using Pd and Id (where d represents one 
of the four join data structures) to mask implementation effects 
and/or system dependent costs. In this section, we illustrate how 
we measured the weight factors for each implementation.  

To estimate the weight factors, first we measured the CPU 
time of each join implementation, by processing 60 seconds 
worth of tuples without intermittent delays. Then, we compared 
the measured run time with the cost formula while adjusting the 
two weight factors. To make the task simpler, we measured the 
run time of an algorithm with two different workloads: one with 
search-only workload and the other with insert/invalidate-only 
workload. The result from the search-only workload was used to 
determine Pd, while the result from the insert/invalidate 
workload was used to determine Id.  
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For instance, to measure the CPU time of a search-only 
workload with an arrival rate of 100 tuples/sec, we processed 
6000 tuples (60 seconds worth) in one batch and measure the 
total running time. We chose this way instead of measuring 
individual tuple handling costs because in this way, we can 
measure the CPU cost even for an input load that exceeds the 
system�s capacity. For instance, if the estimated cost of an 
algorithm crosses the 60 seconds line at the arrival rate of 120 
tuples/sec, this implies that the algorithm will require full 
computing power of the system to process the input rate of 120 
tuples/sec and above.  

We measured CPU times of 20 different points with 
increasing workload rates, then equated the measured values 
with the cost formula and calculated the weight factors. The cost 
formula with the measured weight factors is shown below. 
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Cost of Full Joins 

So far we have been focusing only on a one-way join cost 
formula. We can obtain the full join cost formula by adding any 
two one-way join cost formulas. For instance, if we add the cost 
of a hash join from A to B and the cost of a hash join from B to 
A, we have the cost of a full symmetric pipelined hash join. 
Similarly, if we put HJ and NLJ together, we get an asymmetric 
pipelined join with a HJ data structure built on one side and a 
NLJ on the other. Notice that our one-way join cost formula 

representation is completely independent from the data structure 
used in the opposite side, and this enabled the cost estimation of 
asymmetric combinations of join algorithms.  

5. On Maximizing the Efficiency of 
Processing Joins 

In this section, we investigate strategies for maximizing the 
efficiency of processing sliding window joins in three scenarios: 
(i) one stream is much faster than the other, (ii) computing 
resources are insufficient to keep up with the speed of the input 
streams, and (iii) memory resources are limited.  

The first scenario is dealt with in the context of both memory 
and computing resources being sufficient for the query 
workload, and is presented in Section 5.1. The second scenario 
concerns cases where the computing resources required for the 
workload exceed the amount of resources available in the 
system. The third scenario deals with the cases where the 
memory resources are the bottleneck. The second and third 
scenarios are presented in Section 5.2. 

5.1. Exploiting Asymmetry in the Speed of the 
Input Streams 

In this section, we consider the case where the two sliding 
windows fit in memory and the aggregate speed of two input 
streams is less than the system�s service rate µ (i.e., 

a bλ λ µ+ < .)  The focus in this section is to validate the unit-
time-basis cost model framework presented in the previous 
section and using the cost model, to show how to find the best 
join algorithm combination for a given workload. 

To begin with, let us examine the cost graph shown in Figure 
2. It shows the cost graphs of eight join algorithm combinations 
composed from three one-way joins: HJ, NJ, and TJ. We 
ignored the combinations of join algorithms with a B-tree index 
because its performance was very close to that of a T-tree, while 
a B-tree consumes more memory than a T-tree does. The join 
combination NNJ is not shown in the graph because its cost was 
too high.  
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Figure 2. Estimated costs of eight join algorithm 
combinations. (Size of window A = 5000, Size of window 
B = 5000, Hash bucket size = 10, T-tree node size = 100)  

Figure 3. Measured system costs of the same eight join 
combinations after processing 300 seconds� worth tuples 
without intermittent delays (Size of window A = 5000, Size of 
window B = 5000, Hash bucket size = 10, T-tree node size = 100)
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Memory consumption is an important issue in a continuous 
query. Because of its real-time nature, efficient memory 
utilization is one of the key criteria in selecting an algorithm, 
since expensive disk I/Os should be avoided. Tradeoffs between 
memory utilization and performance were most significant in 
the case of a hash join (We implemented static hash index with 
bucket chains.) In our hash join implementation, memory 
utilization improves as we increase the size of the hash bucket 
(i.e. B/|B| in cost terms.) We tested bucket sizes from two to one 
hundred. The improvement was steep up to ten tuples per 
bucket, and then flattened up gradually. On the other hand, 
increasing the bucket size affected the hash join�s performance 
negatively. As the bucket size increases by one, the algorithm 
needs to perform on average one more comparison for each 
probe. We chose to use ten tuples per bucket because it brings 
the memory utilization close to that of T-tree, while keeping 
performance better than both the T-tree and the B-tree in a non-
skewed workload. A non-skewed workload is a workload not 
skewed to either search or update. For instance, for a one-way 
join A to B ( A BC ) ), stream A is the search workload and B is 
the update workload, and a non-skewed workload means the 
speed difference between the two streams is not significant (i.e., 
the search to update ratio is close to one.) 

On the other hand, the T-tree and the B-tree were less 
sensitive to the size of a tree node in terms of both memory 
utilization and performance. We chose to use 100 tuples per 
node for both the T-tree and the B-tree. In our implementation, 
given the node sizes, the T-tree provided the best memory 
utilization among the three. In the test run, we observed that the 
HJ (bucket size=10) consumed roughly about 5% more memory 
and the BJ (w/ tree order d=50 [24]) consumed about 10% more 
than the TJ.  

In Figure 2, we have four important crossover points: 
starting from the far left, one between TN and TH, then TH and 
HH, HH and HT, and finally HT and NT. This implies that we 
have five winning combinations of join algorithms among the 
range of workloads. TN outperforms others at the far left side of 
the graph where the workload is highly skewed toward stream 
B. Then, TH takes over and dominates until workloads reach the 
20%/80% (λa/λb) point. After that, HH takes over and 
dominates until around the 80%/20% point. The rest of the 
graph is rather symmetric with the fourth and fifth 
combinations, HT and NT.  

Notice that the graph is based on the case where the window 
sizes for the two windows are equal (5000 tuples each.) If we 
change the window size, the crossover points will move either 
left or right depending on the window size ratio. For instance, if 
we increase window A and decrease B, all four crossover points 
in the graph will move towards the right. 

Furthermore, as we mentioned earlier, we can improve the 
performance of Hash Join by keeping the size of the hash bucket 
low. With a hash bucket size of two we can indeed reduce the 
number of crossover points in the graph to two, as HH will 
dominate both HT and TH for all ranges of inputs. But again, 
this will significantly hamper the memory utilization of HH.  

 Figure 3 shows the result of a test run measuring the system 
costs of the same eight join combinations. As we can see by 
comparing Figure 2 and 3, the cost model�s estimation is quite 
accurate on predicting the crossover points as well as the overall 
shape of each join combination�s performance graph.  

In fact, using the cost model, we can calculate the exact 
crossover points by equating the cost of two neighboring join 
combinations.  For instance, to calculate the TN-TH crossover 
point, we equate the costs of TNJ and THJ as shown below. 
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      (8) 

The term B/|B| captures the hash bucket size of the 
implementation; hence we replaced it with 10. Interestingly, the 
crossover point between TN and TH is only dependent on the 
size of window B. If the size of window B increases, the 
crossover point will move towards the left (i.e., where the speed 
of stream B is far greater than A.) If the size of window B 
decreases, the crossover point will move towards the right. For 
example, suppose we have a window B of size 500 tuples. Then, 
the estimated cross-over point is 0.0094, which means if stream 
B is more than 106 times faster than stream A, TNJ will 
outperform THJ, and if B is less than 106 times faster than A, 
THJ will outperform TNJ.  

The remaining three crossover points are shown below. The 
term N in the second and third crossover points represents the 
node size of the T-tree and is 100 in our implementation. 
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Figure 4 shows the performance of the join combinations in 
three different workload settings. Figure 4(a) represents the case 
where the workload is highly skewed. In this example, window 
A is much larger than window B and input stream B is much 
faster than input stream A. The test result is in line with the cost 
model estimation. The estimated costs of the three 
representative workloads (used in Figure 4) are shown in Table 
3. Notice that the estimation was accurate as it correctly 
predicted the winning combination in each workload group. 
Furthermore, the cost model produced the estimation in a 
correct order, which was an exact match with the order of the 
system costs measured during the test run. For instance, in 
Figure 4(a), TNJ exhibited the best performance, while HTJ the 
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worst. The cost model also correctly predicted the relative order 
between the remaining join combinations.  

Figure 4(b) shows the performance graph of a moderately 
skewed workload. Figure 4(c), on the other hand, shows the 
performance result of a relatively even workload. The winning 
combination in Figure 4(b) was HTJ, while in Figure 4(c), the 
winner was HHJ. The cost model�s estimation was accurate for 
both cases. Notice that in Figure 4, some of the join 
combinations are missing in the graphs. We ignored them 
because their cost graphs were far off the chart.  

5.2. Resource Allocation and Join Performance 
In the previous section, we presented a technique to identify 

the best performing join algorithm combinations for a given 
workload. The discussion was based on the assumption that we 
have sufficient resources to handle the workload. In this section, 
we focus on cases where system resources are insufficient to 
fully support the queries and workloads. As a result, users have 
to resort to approximate answers rather than exact answers.  

Our underlying idea is that even though the system may not 
have enough resources to compute all tuples of the join, it may 
have enough resources to compute some subset of the join 
tuples.  If the complete query involves some aggregate (for 
example, average) over the join, users may be willing to accept 
an estimate based upon this subset instead of the exact result.  
The interesting question that arises is how to maximize the 
accuracy of this estimate given the limited resources. 

In what follows, we use the insight that maximizing the 
number of tuples produced by the join will yield the best 
expected approximate answer, since it corresponds to having a 
larger sample of the true join result. Obviously some care must 
be taken to ensure that the subset of the join result produced is a 
random sample of the join.  In the following, we assume that 
when the join algorithm limits its resource usage, it does so in a 

random way.  For example, if the "full" join window on Stream 
A should contain 10,000 tuples, and the resource allocation 
strategies tell us we can only afford to keep 5000 tuples, we 
keep a randomly chosen subset of 5000 tuples out of the full 
10,000. Similarly, if the resource allocator tells us we can only 
afford enough CPU resources to probe 50% of the A tuples into 
the B window, we use a randomly chosen 50% to probe. 

Now, the question is how to allocate the limited resources in 
a way that improves the accuracy of approximate answers. 
Should we allocate the resources across the streams in 
proportion to input stream rates? Should we do so 
proportionally to the size of each window? We focus on this 
problem and investigate efficient resource allocation strategies 
in three remaining quadrants of our problem space defined in 
Table 2.  

5.2.1. Case of Limited Computing Resources and 
Sufficient Memory.    

In this subsection we investigate the case where computing 
resources are insufficient to keep up with the rates of the input 
streams. Let us start with a formula that captures the output rate 
of a sliding window join operation. In the following equation, 
the selectivity factors of windows A and B are denoted as aσ  
and bσ , respectively. To approximate join selectivity, we take 
the smaller value between the two and denote it as σ . 

min( , )( ) ( )o a b a b a br B A B Aσ σ λ λ σ λ λ= + = +                (12) 

In this scenario, however, we have limited computing 
resources and as a result we cannot support the full speed of the 
input streams. Hence, the equation above should be rewritten as 
follows:  
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Figure 4. Measured System Costs of the Join Combinations with Increasing Number of Input Tuples.   a) (left) Window A = 9500, 
Window B = 500, λa = 2, λb = 998   b) (middle) Window A = 7000, Window B = 3000, λa = 800, λb = 200   c) (right) Window A = 
4000, Window B = 6000, λa = 550, λb = 450 

Table 3. Cost Model Estimation.  The first row is the estimated costs of the workload in Figure 4a, the second row is for 4b, and the 
last row is for Figure 4c. 

Window A Window B λa λb HH TT HT TH HN NH TN NT 
9500 500 2 998 7.06 9.56 10.89 5.74 5.99 2845.87 4.67 2849.69 
7000 3000 800 200 7.06 11.85 6.46 12.46 722.39 424.87 727.78 424.27 
4000 6000 550 450 7.06 11.60 8.93 9.73 993.42 543.84 996.09 545.71 
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( )
where   ( join operator service rate), 
           ,  

o a b

a b

a a b b

r B Aσ λ λ
λ λ µ
λ λ λ λ

′ ′

′ ′

′ ′

= +
+ =
≤ ≤

  (13) 

By applying the constraint in the formula, we get: 

( ( ) ) ( )o a a ar B A B A Aσ λ µ λ σ λ σµ′ ′ ′= + − = − +                (14) 

Given this equation, it is clear that we have to allocate the 
maximum amount of computing resources to the join direction 
that evaluates the join from the small window to the big one. In 
case the two window sizes are equal, the output rate is constant 
and equals to Aσµ  regardless of the two input rates.  

For instance, suppose that we have a window A of size 500 
and B of size 1000, and the join operator can handle up to 100 
tuples/sec; the speed of each input stream is greater than the 
service rate. Furthermore, we assume that the cost of inserting 
and invalidating a tuple in a window is relatively small 
compared to the cost of evaluating the join and in turn we can 
effortlessly maintain the two windows without dropping input 
tuples. The best resource allocation strategy in this example is to 
put the maximum resources in the join direction A to B. That is, 
the join service rate of 100 tuples/sec should all be used for 
probing the window B. Hence, the aλ ′  and bλ ′  in the formula 
become 100 and zero, respectively, and the maximum output 
rate we get is 100Kσ ×  tuples/sec. We will call the adjusted 
rates aλ ′  and bλ ′  the effective rates for streams A and B, 
respectively. 

In practice, the actual distribution of resources should be 
done in the context of an application. If an application requires 
to process at least 10 tuples from each input stream in any given 
time unit, the resulting resource allocation in the above example 
should be changed to 90 tuples/sec and 10 tuples/sec to aλ ′  and 

bλ ′ , respectively.  
To validate the analysis, we performed a test with five 

different strategies: maximizing stream A�s effective rate, 
maximizing stream B�s effective rate, allocating resources 
proportionally to the arrival rates, proportionally to window 
sizes, and finally equally among the two inputs. The result is 
shown in Figure 5. As we expected, the winner was MaxA that 
allocated the maximum computing resources to the join 
direction A to B, which is from the smaller window to the bigger 
window, and the worst performer was MaxB that did the exact 
opposite.  

The join algorithm selection should be performed after the 
decision for resource allocation. Once we determine the 

effective rates (workload) of the join operator, we can choose 
the best join algorithm combinations for the adjusted workload, 
in the way we showed in Section 5.1.  

5.2.2. Case of Limited Memory and Sufficient 
Computing Resources.    

In this scenario, we assume that the memory is the 
bottleneck. To improve the query result, we can allocate the 
memory resources across the windows. We add one constraint 
that reflects this into Equation 12 and obtain: 

( )
where   (total avaliable memory)

o a br B A
A B M

σ λ λ= +
+ =

                (15) 

The objective is to allocate memory resources so as to 
maximize the join output rate. We can address this problem by 
rewriting the formula above with the constraint, as shown 
below. 

( ( ) ) ( )o a b b a ar M A A A Mσ λ λ σ λ λ σλ= − + = − +   (16) 

Given the equation above, it is easy to see that the best 
strategy is to allocate most memory to the window 
corresponding to the slower input rate. If stream B is faster than 
stream A we should maximize window A to maximize the output 
rate, and vice versa. In the case where both input streams have 
equal input rates, the size of window A and B becomes 
irrelevant to the output rate. In such a case, the output rate is 
constant and equal to aMσλ . 

Intuitively, we can see that it would be beneficial to keep the 
slower stream in memory and let the faster one just probe 
against it and pass by. At the other end of the spectrum, we can 
think of an opposite strategy that allocates all available memory 
to the fast stream and lets the slow stream probe the fast one. It 
is straightforward that the first scenario is going to outperform 
the second one, because the number of probe operations is 
greater in the first case while the size of the target window being 
probed is identical, and equal to the memory size. 

Figure 6 illustrates the evaluation results of memory 
allocation strategies. We tested five memory allocation 
strategies that include maximizing the size of window A, 
maximizing the size of window B, allocating memory resources 
proportionally to the arrival rates, inverse proportionally to the 
arrival rates, and equal distribution. The test results conformed 
to the analysis.  

Similarly, once we determine the window sizes we can 
calculate the estimated cost of joins with various algorithm 
combinations using the cost formula presented in Section 4.2. 
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Figure 5. Computing Resource Allocation Strategy Evaluation. 
(λa=800, λb=200, A=100, B=200, σ=0.01, µ=100) 
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Figure 6. Memory Allocation Strategy Evaluation. (λa=10, 
λb=50, M=1000, σa=0.005, σb=0.01) 
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Then using the estimation, we can determine the best join 
algorithm combinations for the given query.  

5.2.3 Case of Limited Memory and Limited 
Computing Resources.    

In this scenario, we assume that both memory and computing 
resources are limited and that we can adjust the two windows so 
as to fully utilize the given memory. Additionally, we can adjust 
the effective input rates for the join by allocating the computing 
resources across the windows. We rewrite Equation 12 with the 
additional constraints given in this scenario, as follows:  

( )
where  ,  ,   ,  

o a b

a b a a b b

r B A
A B M

σ λ λ
λ λ µ λ λ λ λ

′ ′

′ ′ ′ ′

= +
+ = + = ≤ ≤

 (17) 

The arrival rates aλ ′  and bλ ′  can be rewritten in terms of 
µ  by applying a distribution factor, x , which is a fraction 
between 0 and 1. Window size B can be also represented in 
terms of A and M. 

,  (1 ) ,  a bx x B M Aλ µ λ µ′ ′= = − = −                                (18) 

By making the substitutions, we obtain: 

( ( ) (1 ) )
  ( (2 1) )

or x M A x A
x M x A

σ µ µ
σ µ µ
= − + −
= − −

                (19) 

Now the output rate becomes a function of the two variables 
x and A. In the case where x > ½, the second term in the 
subtraction, (2 1)x Aµ− , is greater than zero. To maximize ro, 
the second term must be minimized, thus indicating a 
minimization of A. If A is minimized to zero, the term x Mσ µ  
remains. To maximize it, we need to take the maximum x value, 
and then ro converges to Mσµ . In other words, we should 
minimize the size of window A and maximize stream A�s 
effective rate. Similarly, in the case where x < ½, we should 
maximize the size of window A and minimize stream A�s 
effective rate. In fact, Mσµ  is the maximum output rate that 
we can achieve. This is because µ  is the maximum number of 
tuples that the join operator can process in a time unit and M is 
the maximum possible target window size. 

Figure 7 presents an experimental result of the performance 
of various resource allocation strategies. We evaluated five 
different strategies: (i) Max A / Max λb, which maximizes the 
size of window A and stream B�s effective rate, similarly, (ii) 

Max B / Max λa, (iii) Max A / Max λa, (iv) Max B / Max λb, and 
(v) Equal Distribution.  

In the experiment, the best performing group was the 
combination of maximizing the window size in one window and 
maximizing the effective arrival rate in the other window. This 
group consists of Max A / Max λb, and Max B / Max λa. The 
next highest performer, Equal Dist, is a strategy that distributes 
an equal amount of resources to each stream. The worst 
performer was the group of resource allocation strategies that 
maximizes the size and the effective arrival rate of the same 
window. The experimental results conformed to the analysis. 

6. Conclusion 

In this paper we investigated strategies for evaluating sliding 
window joins over pairs of unbounded streams. We introduced a 
unit-time basis cost model to analyze the expected performance 
of these strategies. One of the notable aspects of the proposed 
cost model is that it divides the join cost into two independent 
terms, each corresponding to one of the two join directions. This 
property allows it to estimate the cost of each join direction 
separately.  

To our knowledge our paper is the first to consider using 
different join algorithms for each input to a streaming join (e.g., 
hash join for one input, nested loops join for the other.) We have 
shown that this is important for the performance of sliding 
window joins�in our experiments, we observed cases in which 
the asymmetric streaming algorithms were up to 53% more 
efficient than the symmetric streaming algorithms. Furthermore, 
we have shown that when considering approximate streaming 
window joins, the careful allocation of computing and memory 
resources to the input streams can have a substantial impact on 
the performance of the algorithm. For example, in our 
experiments we observed cases in which an appropriately 
skewed allocation of resources to input streams generated 90% 
more answer tuples per unit time than did the naive equal 
allocation of resources to both input streams. 

A good deal of room for future work exists. One interesting 
direction would be to extend the cost model beyond single joins 
to full query plans. Another potentially interesting direction 
would be to incorporate the findings in this paper into the 
previously proposed adaptive query optimization frameworks, 
so as to extend that work to handle sliding window joins. 
Finally, it would be interesting to model and evaluate other 
algorithms besides the ones presented in this work. 
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