
 1

Introduction

The aim of this essay is to provide an infrastructural design for a large-scale distributed filesystem

aligned to the requirements set out by Onefile. We shall construct our proposal by drawing on

technologies from a variety of sources, including traditional distributed filesystems, peer-to-peer

systems, and Cloud computing. We intend our end-result to have consistency semantics that are no

worse than those offered by the most popular distributed filesystems in use today, whilst providing

enhanced opportunities for scalability, performance, and fault-tolerance.

More specifically, we shall be referring to the Andrew File System (AFS) [1] as the baseline for our

client–server setup, and taking advantage of Coda’s improvements for increased availability,

including disconnected operation [2]. We shall argue for the use of a distributed hash table (DHT) as

a network overlay providing location transparency of the storage servers, harnessed through a

lookup protocol such as Chord [3]. The successful deployment of peer-to-peer file-sharing systems

has demonstrated the suitability of such an approach for Internet-scale applications [4]. Then, we

shall show how applying a cryptographic hash function, such as SHA-2, over the files’ contents can

implicitly achieve several of our goals, including single-instance storage (alternatively called data

deduplication) and load balancing, as exemplified through systems such as CFS [5] (which is built on

Chord) and Venti [6].

Design

Filesystem Structure

At a conceptual level, we shall mirror the filesystem structure that users have grown accustomed to

in today’s mainstream consumer operating systems (as implemented, for example, in the UNIX File

System (UFS) [7], FAT, and NTFS). We shall assume a tree of directories organized in a hierarchical

structure, with each directory optionally containing a number of child subdirectories and/or files.

Each directory/file has associated metadata, including permissions (access rights) for users and

groups, and a timestamp identifying when it was last modified. Files are split into a sequence of

blocks, such that each block may be independently stored at an arbitrary location.

Venti [6] sets out a block-based storage system that can store three types of blocks:

 Directory blocks are identified by their unique directory path, and contain the metadata for

their child subdirectories and files organized as a table. The subdirectory entries would point

to other directory blocks; file entries would point to either data blocks (if the respective file’s

contents fit into a single block) or to pointer blocks.

 Pointer blocks are introduced to permit scalable and load-balanced storage for large files.

Each pointer block would typically consist of a sequence of pointers to the data blocks that

collectively constitute the file. In the case of very large files, pointer blocks may point to

other pointer blocks in a hierarchical manner; the depth of this hierarchy would scale

logarithmically with the size of the file. (This concept is analogous to inode pointer structures

in UFS [7].)

 Data blocks contain the raw data for a contiguous portion of the file.

 2

Figure 1. Sample hierarchical directory structure for \home\s00003. The directory contains two files: smallfile and
largefile. The contents of the former fit into a single data block, whereas the latter’s need to be split across three data
blocks through the indirection of a pointer block.

Subdirectories

Name Permissions Timestamp Pointer

bin

boot

home

Directory block: \

Subdirectories

Name Permissions Timestamp Pointer

s00001

s00002

s00003

Directory block: \home

Subdirectories

Name Permissions Timestamp Pointer

mysub

Files

Name Permissions Timestamp Size Pointer

smallfile

largefile

Directory block: \home\s00003

0101101011

0010100101

0101010010

0101110111

Data block

1101100011

1000100001

0010010100

0010010101

Data block 1011101101

0101010101

0101010100

1010101011

Data block 1110110100

0110001011

0011001010

0010100101

Data block

Pointer block

 3

Addressing Scheme

One aspect of traditional filesystems that may serve as a drawback in large-scale distributed

scenarios is their use of an extrinsic addressing scheme. The address selected for storing each block

is determined arbitrarily with respect to the identity of the block; there is no implicit relationship

between each block and its address. As a consequence, explicit bookkeeping mechanisms need to be

employed for keeping track of the location where each block is stored. On distributed filesystems,

these are made available to clients through a lookup server, which can quickly become a bottleneck

(as well as a single point of failure, unless replicated). AFS mitigates the issue by spreading out this

responsibility over multiple volumes [1]; however, such an approach results in a skewed load-

balance, since volumes containing a lot of frequently-accessed files can still get overloaded.

One of the main insights of DHT-based filesystems is that a block’s address may be derived implicitly

from its identity:

 The identity of a directory block would correspond to its full directory path [8].

 The identity of a data block would be its entire raw binary contents [5], [6].

 The identity of a pointer block would be the concatenation of its sequence of pointers [6].

In order to obtain a concise representation of this identity, we shall apply a hash function over it.

Cryptographic hash functions, such as the SHA family, are particularly well-suited for this end, since

they provide a deterministic means of calculating the hash for any given block with a practically-

negligible risk of collisions [6], [9]. (There have been no reported collisions on SHA-2 to date.) Being

one-way functions, it is computationally infeasible to deduce the original data from just its hash [10].

Cryptographic hash functions provide a uniform distribution over the range of generated hashes,

and ensure that slight changes in the original data will result in a completely different hash, a

property known as the avalanche effect. Therefore, by deriving each block’s address from its

computed hash, we would not only ensure that these addresses can be determined intrinsically

(without requiring lookup servers), but also that the blocks get approximately evenly distributed

across the whole address space [5], [6].

Thus, in order to map this addressing scheme onto our filesystem structure, we would simply need

to substitute hashes for pointers. Hashes for subdirectories do not need to be stored, since they may

be derived from their full directory path at runtime.

 4

Figure 2. Same directory structure as in Figure 1, but with hashes introduced instead of pointers.

Subdirectories

Name Permissions Timestamp

bin

boot

home

Directory block: \

Subdirectories

Name Permissions Timestamp

s00001

s00002

s00003

Directory block: \home

Subdirectories

Name Permissions Timestamp

mysub

Files

Name Permissions Timestamp Size Hash

smallfile 30BDA2…

largefile D4B9A1…

Directory block: \home\s00003

0101101011

0010100101

0101010010

0101110111

Data block

1101100011

1000100001

0010010100

0010010101

Data block 1011101101

0101010101

0101010100

1010101011

Data block 1110110100

0110001011

0011001010

0010100101

Data block

5B9F12…

B501A8…

7A15CE…

Pointer block

F1E472…

7AB634…

91D3EA…

7A15CE…

30BDA2…

5B9F12…

B501A8…

D4B9A1…

abcxyz

 123456…

Legend:

means that the hash for “abcxyz”

computes to “123456…”

 5

Single-Instance Storage

Another consequence of using a deterministic hash function to derive each data block’s address

from its contents is that the system implicitly achieves single-instance storage, since all attempts to

store the same content would always resolve to the same address. Thus, multiple writes of the same

data block become idempotent [6]. This property extends transitively to pointer blocks representing

multiple data blocks, or even hierarchies thereof – a concept originally demonstrated for hash trees

by Merkle [11].

Figure 3. Single-instance storage applied for identical files stored in different directories, belonging to different users.

File metadata, including its name and permissions, is stored within its parent directory, and does not

affect the hash. This way, logical instances of files may be accessed and managed separately, even

when they point to the same physical data – a behaviour very similar to the concept of hard links in

POSIX.

When a file’s contents are modified, its hash would also consequently change; this means that the

new version of the file would need to be stored at a different address from the old. Thus, all data

and pointer blocks become intrinsically write-once [11], and can never become inconsistent.

If a change only affects a small portion of a file, then single-instance storage would still apply for all

the data blocks (and, possibly, pointer blocks) that were unaffected; this allows space savings to still

be reaped for files whose contents are largely similar but not identical. Space savings would be

maximized if one uses Rabin fingerprinting for computing hashes, rather than fixed-size

blocks [12], [13].

Files

Name Permissions Hash

notes.pdf s00003 D4B9A1…

Directory block:

\home\s00003

1101100011

1000100001

0010010100

0010010101

Data block

1011101101

0101010101

0101010100

1010101011

Data block

1110110100

0110001011

0011001010

0010100101

Data block

5B9F12…

B501A8…

7A15CE…

Pointer block

7A15CE…

5B9F12…

 B501A8…

D4B9A1…

Files

Name Permissions Hash

exc.pdf s49015 D4B9A1…

Directory block:

\home\s49015

 6

Figure 4. A change to a single bit of the file would result in a completely new hash for the data block, which propagates up
to the pointer block, and implicitly requires the file’s entry in its parent directory to point to a new address.

After the new data (and pointer) blocks have been written, the new hash for the file needs to be

updated in its parent directory. Directory blocks do not share the same write-once property, since

their hash is computed from their full path. Thus, any updates to directory blocks would need to be

serialized for atomicity.

Storage Servers

Using the protocol defined in Chord [3], one may establish a distributed hash table (DHT) as an

overlay network for the storage servers, where each server’s identifier hash is computed from its

fixed IP address (or, alternatively, its MAC address). Each server would be assigned responsibility for

the portion of the address space for which it is the closest successor (that is, the ranges of hashes

lying between its own identifier hash and its immediate predecessor’s). Due to the random

distribution achieved by cryptographic hash algorithms, these portions are roughly equivalent in

length, and would remain so even as servers are added to or removed from the network, provided

that the network is large enough [14].

Files

Name Permissions Hash

notes.pdf s00003 D4B9A1…

Directory block:

\home\s00003

1101100011

1000100001

0010010100

0010010100

Data block

1101100011

1000100001

0010010100

0010010101

Data block

1011101101

0101010101

0101010100

1010101011

Data block

1110110100

0110001011

0011001010

0010100101

Data block

5B9F12…

B501A8…

7A15CE…

Pointer block

7A15CE…

6B91AE…

5B9F12…

 B501A8…

D4B9A1…

Files

Name Permissions Hash

exc.pdf s49015 5E19CA…

Directory block:

\home\s49015

5B9F12…
B501A8…

6B91AE…

Pointer block

5E19CA…

 7

Chord [3] expects each server to keep a record of a small number of other servers participating in

the network, situated at exponentially-increasing distances along the hash space; this is known as

the finger table.

Figure 5. A Chord ring [3] for eight servers, showing the finger table for the server 192.168.0.68. Each server’s finger table
would contain entries, mapping hashes to physical addresses of other servers (where is the size of the network).

Whenever a client needs to find the server responsible for a particular hash in Chord [3], it can start

off by sending the request to any server at random. The server would check whether it is responsible

for the said hash. If it is, it would just report success to the client. If not, it would consult its finger

table and forward the request to the server whose hash is the closest predecessor. This process,

which at least halves the remaining address space at each step, is bound to complete in

steps, where is the total number of storage servers.

192.168.0.140
01A87E…

192.168.0.34
1E94D0…

192.168.0.191
3FA195…

192.168.0.82
60A295…

192.168.0.68
7CA901…

192.168.0.131
9D195B…

192.168.0.7
BE2A5B…

192.168.0.237

E491D7…

Hash Target

9D195B… 192.168.0.131

BE2A5B… 192.168.0.7

01A87E… 192.168.0.140

 8

Figure 6. The path taken by Chord [3] to resolve a request for the block having hash “12A9FB…”. The client initially
contacts a random server, which forwards to request to the closest server in its finger table. This is repeated until the
request reaches the server having the succeeding hash, “1E94D0…”, which therefore holds the requested block.

Locally, each storage server would maintain the mapping between its hashes and the physical disk

locations of their corresponding blocks through a local data structure, such as a binary search tree or

a local hash table. Since this data structure only contains hashes and pointers, it can typically be held

in memory.

Fault Tolerance

CFS [5] achieves fault-tolerance by storing each block not only on the server whose hash

immediately succeeds it, but also on a further successors, where is the desired degree of

redundancy. Since the cryptographic hash function provides a random distribution, successors along

the hash space would be well-dispersed across the physical setup of the network, making it

statistically unlikely that any local adversity affecting a small subset of the network (such as a power

or router fault) would impact the entire sequence of successors. For example, by storing six replicas

of each block, it is possible for up to 20% of the servers to fail simultaneously without losing any

data [5].

Chord [3] provides stabilization mechanisms for automatically updating the finger tables and

successor lists whenever nodes join or depart the network. These are exploited by CFS [5] to

dynamically replicate blocks onto new storage servers following node failures, making the network

self-repairing.

192.168.0.140
01A87E…

192.168.0.34
1E94D0…

192.168.0.191
3FA195…

192.168.0.82
60A295…

192.168.0.68
7CA901…

192.168.0.131
9D195B…

192.168.0.7
BE2A5B…

192.168.0.237

E491D7…

12A9FB…

Hash Target

60A295… 192.168.0.82

7CA901… 192.168.0.68

BE2A5B… 192.168.0.7

Hash Target

E491D7… 192.168.0.237

01A87E… 192.168.0.140

3FA195… 192.168.0.191

Hash Target

1E94D0… 192.168.0.34

3FA195… 192.168.0.191

7CA901… 192.168.0.68

 9

Load Balancing

The random distribution of the hashes implies that each server is responsible for roughly an equal

number of blocks. Since directories are also stored as blocks, they too would get evenly distributed

across the network; this circumvents the bottleneck of using centralized servers to provide directory

path resolutions [5].

Another convenient consequence of this random distribution is that any client accessing a large

number of blocks – possibly even belonging to a single massive file – would be able to issue their

requests across all servers concurrently, boosting system throughput.

Centralized Lookup

Being designed for peer-to-peer systems (P2P) comprised of transient participants, some

characteristics of DHTs tend to be too pessimistic about node failures, having to contend with

median lifetimes on the order of hours [15]. For this reason, they sacrifice some efficiency for

aggressive robustness – a trade-off that may not be as applicable on Cloud infrastructures, where

hardware failures would be significantly less frequent [16]. Furthermore, full decentralization is a

core priority in P2P; this is not necessarily desirable on the Cloud, where clients may rely on

accessing a core set of trusted servers, and potentially require centrally-administered services such

as user authentication and access control [4].

In light of this, we can boost our system’s efficiency by introducing an additional layer of lookup

servers, whose role is loosely analogous to – albeit much simpler than – the master servers in the

Google File System (GFS) [17]. Each lookup server independently maintains a table of all available

storage servers, sorted by their hash identifiers. When a client needs to look up the storage server

responsible for the block having a particular hash, it may now send the request to a lookup server

(picked at random for load balancing), who would forward it directly to the correct storage server.

This reduces the path length of any request from a logarithmic number of hops to a constant two-

hop scheme [18].

Like master servers in GFS [17], our lookup servers are stateless and operate from memory. Their

lookup tables are not persisted, but populated dynamically: When a lookup server starts up, it issues

a broadcast requesting the identifier hash of each storage server, and updates its table with all

received responses. When a new storage server joins the network, it similarly broadcasts its

identifier hash to all lookup servers. Each lookup server may monitor a random subset of the storage

servers through heartbeat messages [17]; when a failure is detected, the lookup server should send

out a broadcast in order to update the other lookup servers as well as accelerate the stabilization

mechanism on the storage servers.

A further improvement that may be considered would be the caching of the lookup table on the

client side. This allows clients to bypass the lookup servers and contact the correct storage server

directly for most of their requests, thereby reducing the network latency to a single round-trip.

Clients may request a callback promise (discussed below) for having lookup servers notify them

when the lookup table changes.

 10

Figure 7. Same lookup as in Figure 6, but using lookup servers to immediately identify the responsible storage server for
the requested hash.

Client Access

In order to provide a seamless experience for end-users, including the possibility for disconnected

operation, we shall use the same approach as AFS [1] and Coda [2], and provide a client-side module

for extending the local filesystem name space. This client module implements two interfaces: one

for plugging in to the operating system’s virtual filesystem (VFS) on the local workstation [19], and

one for communicating with the servers over the network. Within its core, the client module may

also implement any additional client-side functionality, such as caching and logging.

By registering itself with the VFS, the client module becomes transparently accessible by user

applications (including the shell) through a mount-point on the local name space – any file paths

traversing this mount point would get forwarded by the kernel to our module [19]. The API for

registering with the VFS may vary across platforms, requiring our module to provide an OS-specific

implementation which, among other responsibilities, needs to transform any filesystem structures or

metadata received from the storage servers to the format expected by the VFS – Mazières [20]

proposes a cross-platform toolkit for improving portability. However, the rest of the functionality of

192.168.0.140
01A87E…

192.168.0.34
1E94D0…

192.168.0.191
3FA195…

192.168.0.82
60A295…

192.168.0.68
7CA901…

192.168.0.131
9D195B…

192.168.0.7
BE2A5B…

192.168.0.237

E491D7…

12A9FB…

Hash Target

01A87E… 192.168.0.140

1E94D0… 192.168.0.34

3FA195… 192.168.0.191

60A295… 192.168.0.82

7CA901… 192.168.0.68

9D195B… 192.168.0.131

BE2A5B… 192.168.0.7

E491D7… 192.168.0.237

Lookup Servers

 11

the module, including its caching mechanism and client–server communication protocol, may be

implemented in an OS-independent manner, and reused across all targeted OSes.

Figure 8. Role of client module for intermediating between the local VFS and the storage servers.

Each client may communicate with the lookup and storage servers using remote procedure calls

(RPC). When a file is requested, it should be fetched in entirety and cached within the client module.

Since the data blocks for each file would be dispersed across the network, their requests may be

issued to – and serviced by – the responsible servers concurrently, thereby boosting throughput.

Consequently, for large transfers, the performance of the system would only be bound by the

network bandwidth [21], [22], which may substantially outperform disk throughput (particularly for

fragmented files) [23]. Additionally, clients should pick which replica to direct each request towards

at random, so as to promote load-balancing.

In order to limit network congestion, we will provide write-on-close semantics like in AFS [1]. When

a file with saved changes is closed, the client module would upload any data (and pointer) chunks

that were affected to their respective storage servers, based on their new hashes. Finally, the client

needs to inform the servers responsible for the parent directory to update the hash stored as the

file’s entry in order to point to the new data.

Client module

Kernel mode

User mode

Kernel

VFS

Application

accessing

filesystem

Cache management and

other core client logic

VFS plug-in

Service client

Storage service

Client workstation

Storage server

1

3

4

5

2 6

 12

Coda [2] specifies that such file updates should be issued by the client to all replicas simultaneously.

A change may be considered as successfully committed once it has been confirmed by more than

two-thirds of the responsible servers. This allows commits to succeed even in the presence of server

failures or network partitions, and ensures, with high probability, that the change would eventually

be successfully propagated to all replicas using Byzantine agreement [18], [24].

The immutability of data and pointer blocks guarantees that no write conflicts may arise when

several users are simultaneously accessing distinct logical files pointing to the same physical data.

When any byte in a resource is changed, its hash would also change, and therefore needs to be

stored at a separate address.

However, write conflicts may arise when users simultaneously access the same logical file, since

updates to the directory block may result in inconsistencies. We shall assume an optimistic

concurrency control strategy, where simultaneous updates are permitted locally, but would get

detected upon being committed to the servers due to a differing timestamp. We will follow the

suggestion of Coda [2] and provide the users with tools to resolve these conflicts manually, similarly

to a version-control system.

Finally, we shall also borrow the notion of callback promises from AFS [1] and Coda [2], allowing

clients to be notified promptly when a file they have open has been modified by another user. Note

that the callback promise needs to be established by the server responsible for the directory block.

Disconnected Operation

Coda [2] caches entire files within its client module in order to improve performance by exploiting

both temporal locality (when the same data is accessed again later) and spatial locality (when other

portions of the same file are accessed). Kistler & Satyanarayanan [25] argue that this caching may

also be used for improving availability. By persisting the cache to the local disk, Coda would ensure

that its client module would be capable of permitting access to the files even when the workstation

is restarted whilst disconnected.

Whilst AFS [1] uses a least recently used (LRU) algorithm for determining which data to retain in its

cache, Coda [2] complements this with “hoard profiles”, through which each user may specify a list

of important files that should always be maintained in cache [25].

Any writes that the user performs in disconnected mode would get logged by the client module.

Once the client reconnects, it would propagate such updates to the responsible servers, using the

same timestamp-based concurrency control as discussed above. It should also re-establish any

callback promises for its cached files.

Security

Each client is expected to authenticate with the system before it may access any directories or files.

We recommend the use of Kerberos [26], a network authentication protocol that relies on a set of

Authentication Servers (AS). Each user would initially supply their password to the client program,

which gets hashed using a one-way function and transmitted to the Key Distribution Center (KDC).

 13

The KDC returns a Ticket Granting Ticket (TGT), which may be subsequently used for generating

tickets (session keys) whenever the client needs to communicate with any storage server.

Access control only needs to be enforced when accessing directory entries. There is no need to

enforce security on the data (or pointer) blocks – since their address constitutes a cryptographic

hash, it is computationally infeasible for an attacker to come up with the address for a file to which

they did not already have access. Given that the hash space is massive (2 possibilities, where is

the number of bits in the hash), brute-force enumeration will not yield any results either.

An extrinsic risk is that hashes for files may be leaked to unauthorized users through external

applications, since a file’s hash in itself is not generally considered to be sensitive information. To

avoid this scenario, we should ensure that the hashes used in our system are salted.

Integrity of data and pointer blocks may be verified by re-computing their hashes and checking that

it matches the stored one [6]. Per the avalanche effect, corruption in just a single byte would result

in a completely different hash. Storage servers may periodically perform such verification in the

background, and request the correct data from any of their replicas when corruption is detected.

Harnik et al. [27] demonstrate a side-channel attack that applies to several systems employing cross-

user client-side deduplication, whereby an attacker may deduce the prior existence of a specific file

based on whether the system recognizes its hash. This attack may be prevented either by moving

data deduplication to the server side, or by introducing random delays.

Conclusion

To conclude, we shall summarize how our system design meets all the requirements set out for

Onefile.

Single-instance storage of physical files is achieved by deterministically deriving their target address

from their contents using a cryptographic hash function. Logical aliases are allowed to span

directories and users since they are stored within their respective parent directories, along with their

specific filenames and permissions. Consequently, access control is enforced based on this file

metadata. The avalanche effect ensures that any change to a file’s content would result in a new

hash, thereby guaranteeing that the new version is stored at a different address from the old.

Although identical data blocks resolve to a single address, each address is stored not only by the

immediate hash successor, but also across a number of replicas. When a server fails, the network

uses stabilization mechanisms to ensure that its contents are made available on another server.

Users may work offline by accessing their files from the local cache stored through in the client

module. When the connection is re-established, the client module would propagate any logged

changes from the cached files to the servers, and only assume success when the servers are in a

state that would reach Byzantine agreement, thereby ensuring consistency.

The client module integrates seamlessly with the local operating system’s name space by registering

itself with the VFS, allowing the kernel to issue callbacks to it whenever the user traverses its mount

point.

 14

Finally, we are confident that the core design of our system may scale to infrastructures of any size,

since it is modelled on peer-to-peer frameworks that have already successfully demonstrated robust

operation on Internet-scale applications.

References

[1] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham,
and M. J. West, ‘Scale and performance in a distributed file system’, ACM Transactions on
Computer Systems (TOCS), vol. 6, no. 1, pp. 51–81, 1988.

[2] M. Satyanarayanan, ‘Scalable, secure, and highly available distributed file access’, Computer,
vol. 23, no. 5, pp. 9 –18, May 1990.

[3] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakrishnan,
‘Chord: a scalable peer-to-peer lookup protocol for internet applications’, Networking,
IEEE/ACM Transactions on, vol. 11, no. 1, pp. 17–32, 2003.

[4] I. Foster and A. Iamnitchi, ‘On death, taxes, and the convergence of peer-to-peer and grid
computing’, Peer-to-Peer Systems II, pp. 118–128, 2003.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, ‘Wide-area cooperative storage
with CFS’, ACM SIGOPS Operating Systems Review, vol. 35, no. 5, pp. 202–215, 2001.

[6] S. Quinlan and S. Dorward, ‘Venti: a new approach to archival storage’, in Proceedings of the
FAST 2002 Conference on File and Storage Technologies, 2002, vol. 4.

[7] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, ‘A fast file system for UNIX’, ACM
Transactions on Computer Systems (TOCS), vol. 2, no. 3, pp. 181–197, 1984.

[8] J. Li and S. Vuong, ‘An Ontological Framework for Large-Scale Grid Resource Discovery’, in 12th
IEEE Symposium on Computers and Communications, 2007. ISCC 2007, 2007, pp. 757 –762.

[9] B. Zhu, K. Li, and H. Patterson, ‘Avoiding the disk bottleneck in the data domain deduplication
file system’, in Proceedings of the 6th USENIX Conference on File and Storage Technologies,
Berkeley, CA, USA, 2008, pp. 18:1–18:14.

[10] M. Naor and M. Yung, ‘Universal one-way hash functions and their cryptographic applications’,
in Proceedings of the twenty-first annual ACM symposium on Theory of computing, 1989, pp.
33–43.

[11] R. C. Merkle, ‘A Digital Signature Based on a Conventional Encryption Function’, in A Conference
on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, London,
UK, UK, 1988, pp. 369–378.

[12] A. Muthitacharoen, B. Chen, and D. Mazieres, ‘A low-bandwidth network file system’, in ACM
SIGOPS Operating Systems Review, 2001, vol. 35, pp. 174–187.

[13] D. T. Meyer and W. J. Bolosky, ‘A study of practical deduplication’, Trans. Storage, vol. 7, no. 4,
pp. 14:1–14:20, Feb. 2012.

[14] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, ‘Consistent hashing
and random trees: distributed caching protocols for relieving hot spots on the World Wide
Web’, in Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, New
York, NY, USA, 1997, pp. 654–663.

[15] D. Stutzbach and R. Rejaie, ‘Understanding churn in peer-to-peer networks’, in Internet
Measurement Conference: Proceedings of the 6 th ACM SIGCOMM conference on Internet
measurement, 2006, vol. 25, pp. 189–202.

 15

[16] K. V. Vishwanath and N. Nagappan, ‘Characterizing cloud computing hardware reliability’, in
Proceedings of the 1st ACM symposium on Cloud computing, New York, NY, USA, 2010, pp. 193–
204.

[17] S. Ghemawat, H. Gobioff, and S. T. Leung, ‘The Google file system’, in ACM SIGOPS Operating
Systems Review, 2003, vol. 37, pp. 29–43.

[18] A. Verma, S. Venkataraman, M. Caesar, and R. H. Campbell, ‘Scalable Storage for Data-Intensive
Computing’, Handbook of Data Intensive Computing, pp. 109–127, 2011.

[19] S. R. Kleiman and S. Microsystems, ‘Vnodes: An architecture for multiple file system types’,
1986, pp. 238–247.

[20] D. Mazières, ‘A Toolkit for User-Level File Systems’, in Proceedings of the General Track: 2002
USENIX Annual Technical Conference, Berkeley, CA, USA, 2001, pp. 261–274.

[21] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi, ‘Grid Datafarm Architecture for
Petascale Data Intensive Computing’, in 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2002, 2002, p. 102.

[22] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake, and C. V. Packer, ‘Beowulf:
A Parallel Workstation For Scientific Computation’, in In Proceedings of the 24th International
Conference on Parallel Processing, 1995, pp. 11–14.

[23] J. Zhang, G. Wu, X. Hu, and X. Wu, ‘A Distributed Cache for Hadoop Distributed File System in
Real-Time Cloud Services’, in 2012 ACM/IEEE 13th International Conference on Grid Computing
(GRID), 2012, pp. 12 –21.

[24] L. Lamport, R. Shostak, and M. Pease, ‘The Byzantine generals problem’, ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[25] J. J. Kistler and M. Satyanarayanan, ‘Disconnected operation in the Coda File System’, ACM
Trans. Comput. Syst., vol. 10, no. 1, pp. 3–25, Feb. 1992.

[26] B. C. Neuman and T. Ts’o, ‘Kerberos: an authentication service for computer networks’, IEEE
Communications Magazine, vol. 32, no. 9, pp. 33 –38, Sep. 1994.

[27] D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘Side Channels in Cloud Services: Deduplication in
Cloud Storage’, IEEE Security Privacy, vol. 8, no. 6, pp. 40 –47, Dec. 2010.

	Introduction
	Design
	Filesystem Structure
	Addressing Scheme
	Single-Instance Storage
	Storage Servers
	Fault Tolerance
	Load Balancing

	Centralized Lookup
	Client Access
	Disconnected Operation
	Security

	Conclusion
	References

