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Introduction 

The aim of this essay is to provide an infrastructural design for a large-scale distributed filesystem 

aligned to the requirements set out by Onefile. We shall construct our proposal by drawing on 

technologies from a variety of sources, including traditional distributed filesystems, peer-to-peer 

systems, and Cloud computing. We intend our end-result to have consistency semantics that are no 

worse than those offered by the most popular distributed filesystems in use today, whilst providing 

enhanced opportunities for scalability, performance, and fault-tolerance. 

More specifically, we shall be referring to the Andrew File System (AFS) [1] as the baseline for our 

client–server setup, and taking advantage of Coda’s improvements for increased availability, 

including disconnected operation [2]. We shall argue for the use of a distributed hash table (DHT) as 

a network overlay providing location transparency of the storage servers, harnessed through a 

lookup protocol such as Chord [3]. The successful deployment of peer-to-peer file-sharing systems 

has demonstrated the suitability of such an approach for Internet-scale applications [4]. Then, we 

shall show how applying a cryptographic hash function, such as SHA-2, over the files’ contents can 

implicitly achieve several of our goals, including single-instance storage (alternatively called data 

deduplication) and load balancing, as exemplified through systems such as CFS [5] (which is built on 

Chord) and Venti [6]. 

Design 

Filesystem Structure 

At a conceptual level, we shall mirror the filesystem structure that users have grown accustomed to 

in today’s mainstream consumer operating systems (as implemented, for example, in the UNIX File 

System (UFS) [7], FAT, and NTFS). We shall assume a tree of directories organized in a hierarchical 

structure, with each directory optionally containing a number of child subdirectories and/or files. 

Each directory/file has associated metadata, including permissions (access rights) for users and 

groups, and a timestamp identifying when it was last modified. Files are split into a sequence of 

blocks, such that each block may be independently stored at an arbitrary location.  

Venti [6] sets out a block-based storage system that can store three types of blocks: 

 Directory blocks are identified by their unique directory path, and contain the metadata for 

their child subdirectories and files organized as a table. The subdirectory entries would point 

to other directory blocks; file entries would point to either data blocks (if the respective file’s 

contents fit into a single block) or to pointer blocks. 

 Pointer blocks are introduced to permit scalable and load-balanced storage for large files. 

Each pointer block would typically consist of a sequence of pointers to the data blocks that 

collectively constitute the file. In the case of very large files, pointer blocks may point to 

other pointer blocks in a hierarchical manner; the depth of this hierarchy would scale 

logarithmically with the size of the file. (This concept is analogous to inode pointer structures 

in UFS [7].) 

 Data blocks contain the raw data for a contiguous portion of the file. 
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Figure 1. Sample hierarchical directory structure for \home\s00003. The directory contains two files: smallfile and 
largefile. The contents of the former fit into a single data block, whereas the latter’s need to be split across three data 
blocks through the indirection of a pointer block. 
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Addressing Scheme 

One aspect of traditional filesystems that may serve as a drawback in large-scale distributed 

scenarios is their use of an extrinsic addressing scheme. The address selected for storing each block 

is determined arbitrarily with respect to the identity of the block; there is no implicit relationship 

between each block and its address. As a consequence, explicit bookkeeping mechanisms need to be 

employed for keeping track of the location where each block is stored. On distributed filesystems, 

these are made available to clients through a lookup server, which can quickly become a bottleneck 

(as well as a single point of failure, unless replicated). AFS mitigates the issue by spreading out this 

responsibility over multiple volumes [1]; however, such an approach results in a skewed load-

balance, since volumes containing a lot of frequently-accessed files can still get overloaded. 

One of the main insights of DHT-based filesystems is that a block’s address may be derived implicitly 

from its identity: 

 The identity of a directory block would correspond to its full directory path [8]. 

 The identity of a data block would be its entire raw binary contents [5], [6]. 

 The identity of a pointer block would be the concatenation of its sequence of pointers [6].  

In order to obtain a concise representation of this identity, we shall apply a hash function over it. 

Cryptographic hash functions, such as the SHA family, are particularly well-suited for this end, since 

they provide a deterministic means of calculating the hash for any given block with a practically-

negligible risk of collisions [6], [9]. (There have been no reported collisions on SHA-2 to date.) Being 

one-way functions, it is computationally infeasible to deduce the original data from just its hash [10].  

Cryptographic hash functions provide a uniform distribution over the range of generated hashes, 

and ensure that slight changes in the original data will result in a completely different hash, a 

property known as the avalanche effect. Therefore, by deriving each block’s address from its 

computed hash, we would not only ensure that these addresses can be determined intrinsically 

(without requiring lookup servers), but also that the blocks get approximately evenly distributed 

across the whole address space [5], [6]. 

Thus, in order to map this addressing scheme onto our filesystem structure, we would simply need 

to substitute hashes for pointers. Hashes for subdirectories do not need to be stored, since they may 

be derived from their full directory path at runtime.  
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Figure 2. Same directory structure as in Figure 1, but with hashes introduced instead of pointers. 
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Single-Instance Storage 

Another consequence of using a deterministic hash function to derive each data block’s address 

from its contents is that the system implicitly achieves single-instance storage, since all attempts to 

store the same content would always resolve to the same address. Thus, multiple writes of the same 

data block become idempotent [6]. This property extends transitively to pointer blocks representing 

multiple data blocks, or even hierarchies thereof – a concept originally demonstrated for hash trees 

by Merkle [11]. 

 

Figure 3. Single-instance storage applied for identical files stored in different directories, belonging to different users. 

File metadata, including its name and permissions, is stored within its parent directory, and does not 

affect the hash. This way, logical instances of files may be accessed and managed separately, even 

when they point to the same physical data – a behaviour very similar to the concept of hard links in 

POSIX. 

When a file’s contents are modified, its hash would also consequently change; this means that the 

new version of the file would need to be stored at a different address from the old. Thus, all data 

and pointer blocks become intrinsically write-once [11], and can never become inconsistent. 

If a change only affects a small portion of a file, then single-instance storage would still apply for all 

the data blocks (and, possibly, pointer blocks) that were unaffected; this allows space savings to still 

be reaped for files whose contents are largely similar but not identical. Space savings would be 

maximized if one uses Rabin fingerprinting for computing hashes, rather than fixed-size 

blocks [12], [13]. 
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Figure 4. A change to a single bit of the file would result in a completely new hash for the data block, which propagates up 
to the pointer block, and implicitly requires the file’s entry in its parent directory to point to a new address. 

After the new data (and pointer) blocks have been written, the new hash for the file needs to be 

updated in its parent directory. Directory blocks do not share the same write-once property, since 

their hash is computed from their full path. Thus, any updates to directory blocks would need to be 

serialized for atomicity. 
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Using the protocol defined in Chord [3], one may establish a distributed hash table (DHT) as an 

overlay network for the storage servers, where each server’s identifier hash is computed from its 

fixed IP address (or, alternatively, its MAC address). Each server would be assigned responsibility for 

the portion of the address space for which it is the closest successor (that is, the ranges of hashes 

lying between its own identifier hash and its immediate predecessor’s). Due to the random 

distribution achieved by cryptographic hash algorithms, these portions are roughly equivalent in 

length, and would remain so even as servers are added to or removed from the network, provided 

that the network is large enough [14]. 

Files 

Name Permissions Hash 

notes.pdf s00003 D4B9A1… 

 

Directory block:  

\home\s00003 

1101100011

1000100001

0010010100

0010010100 

Data block 

1101100011

1000100001

0010010100

0010010101 

Data block 

1011101101

0101010101

0101010100

1010101011 

Data block 

1110110100

0110001011

0011001010

0010100101 

Data block 

5B9F12… 

B501A8… 

7A15CE… 

 

Pointer block 

  
7A15CE… 

  
6B91AE… 

  
5B9F12…  

  B501A8…  

  

D4B9A1… 

Files 

Name Permissions Hash 

exc.pdf s49015 5E19CA… 

 

Directory block:  

\home\s49015 

5B9F12… 
B501A8… 

6B91AE… 
 

 

Pointer block 

  

5E19CA… 



 7  
 

Chord [3] expects each server to keep a record of a small number of other servers participating in 

the network, situated at exponentially-increasing distances along the hash space; this is known as 

the finger table.  

 

Figure 5. A Chord ring [3] for eight servers, showing the finger table for the server 192.168.0.68. Each server’s finger table 
would contain       entries, mapping hashes to physical addresses of other servers (where   is the size of the network). 

Whenever a client needs to find the server responsible for a particular hash in Chord [3], it can start 

off by sending the request to any server at random. The server would check whether it is responsible 

for the said hash. If it is, it would just report success to the client. If not, it would consult its finger 

table and forward the request to the server whose hash is the closest predecessor. This process, 

which at least halves the remaining address space at each step, is bound to complete in          

steps, where   is the total number of storage servers. 

 

 

 

 

 

 

  

 

192.168.0.140 
01A87E… 

192.168.0.34 
1E94D0… 

192.168.0.191 
3FA195… 

192.168.0.82 
60A295… 

192.168.0.68 
7CA901… 

192.168.0.131 
9D195B… 

192.168.0.7 
BE2A5B… 

192.168.0.237 

E491D7… 

Hash Target 

9D195B… 192.168.0.131 

BE2A5B… 192.168.0.7 

01A87E… 192.168.0.140 

 



 8  
 

 

Figure 6. The path taken by Chord [3] to resolve a request for the block having hash “12A9FB…”. The client initially 
contacts a random server, which forwards to request to the closest server in its finger table. This is repeated until the 
request reaches the server having the succeeding hash, “1E94D0…”, which therefore holds the requested block. 

Locally, each storage server would maintain the mapping between its hashes and the physical disk 

locations of their corresponding blocks through a local data structure, such as a binary search tree or 

a local hash table. Since this data structure only contains hashes and pointers, it can typically be held 

in memory. 

Fault Tolerance 

CFS [5] achieves fault-tolerance by storing each block not only on the server whose hash 

immediately succeeds it, but also on a further   successors, where   is the desired degree of 

redundancy. Since the cryptographic hash function provides a random distribution, successors along 

the hash space would be well-dispersed across the physical setup of the network, making it 

statistically unlikely that any local adversity affecting a small subset of the network (such as a power 

or router fault) would impact the entire sequence of successors. For example, by storing six replicas 

of each block, it is possible for up to 20% of the servers to fail simultaneously without losing any 

data [5]. 

Chord [3] provides stabilization mechanisms for automatically updating the finger tables and 

successor lists whenever nodes join or depart the network. These are exploited by CFS [5] to 

dynamically replicate blocks onto new storage servers following node failures, making the network 

self-repairing. 
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Load Balancing 

The random distribution of the hashes implies that each server is responsible for roughly an equal 

number of blocks. Since directories are also stored as blocks, they too would get evenly distributed 

across the network; this circumvents the bottleneck of using centralized servers to provide directory 

path resolutions [5]. 

Another convenient consequence of this random distribution is that any client accessing a large 

number of blocks – possibly even belonging to a single massive file – would be able to issue their 

requests across all servers concurrently, boosting system throughput. 

Centralized Lookup 

Being designed for peer-to-peer systems (P2P) comprised of transient participants, some 

characteristics of DHTs tend to be too pessimistic about node failures, having to contend with 

median lifetimes on the order of hours [15]. For this reason, they sacrifice some efficiency for 

aggressive robustness – a trade-off that may not be as applicable on Cloud infrastructures, where 

hardware failures would be significantly less frequent [16]. Furthermore, full decentralization is a 

core priority in P2P; this is not necessarily desirable on the Cloud, where clients may rely on 

accessing a core set of trusted servers, and potentially require centrally-administered services such 

as user authentication and access control [4]. 

In light of this, we can boost our system’s efficiency by introducing an additional layer of lookup 

servers, whose role is loosely analogous to – albeit much simpler than – the master servers in the 

Google File System (GFS) [17]. Each lookup server independently maintains a table of all available 

storage servers, sorted by their hash identifiers. When a client needs to look up the storage server 

responsible for the block having a particular hash, it may now send the request to a lookup server 

(picked at random for load balancing), who would forward it directly to the correct storage server. 

This reduces the path length of any request from a logarithmic number of hops to a constant two-

hop scheme [18]. 

Like master servers in GFS [17], our lookup servers are stateless and operate from memory. Their 

lookup tables are not persisted, but populated dynamically: When a lookup server starts up, it issues 

a broadcast requesting the identifier hash of each storage server, and updates its table with all 

received responses. When a new storage server joins the network, it similarly broadcasts its 

identifier hash to all lookup servers. Each lookup server may monitor a random subset of the storage 

servers through heartbeat messages [17]; when a failure is detected, the lookup server should send 

out a broadcast in order to update the other lookup servers as well as accelerate the stabilization 

mechanism on the storage servers. 

A further improvement that may be considered would be the caching of the lookup table on the 

client side. This allows clients to bypass the lookup servers and contact the correct storage server 

directly for most of their requests, thereby reducing the network latency to a single round-trip. 

Clients may request a callback promise (discussed below) for having lookup servers notify them 

when the lookup table changes. 
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Figure 7. Same lookup as in Figure 6, but using lookup servers to immediately identify the responsible storage server for 
the requested hash.  
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the module, including its caching mechanism and client–server communication protocol, may be 

implemented in an OS-independent manner, and reused across all targeted OSes. 

 

Figure 8. Role of client module for intermediating between the local VFS and the storage servers.  

Each client may communicate with the lookup and storage servers using remote procedure calls 

(RPC). When a file is requested, it should be fetched in entirety and cached within the client module. 

Since the data blocks for each file would be dispersed across the network, their requests may be 

issued to – and serviced by – the responsible servers concurrently, thereby boosting throughput. 

Consequently, for large transfers, the performance of the system would only be bound by the 

network bandwidth [21], [22], which may substantially outperform disk throughput (particularly for 

fragmented files) [23]. Additionally, clients should pick which replica to direct each request towards 

at random, so as to promote load-balancing. 

In order to limit network congestion, we will provide write-on-close semantics like in AFS [1]. When 

a file with saved changes is closed, the client module would upload any data (and pointer) chunks 

that were affected to their respective storage servers, based on their new hashes. Finally, the client 

needs to inform the servers responsible for the parent directory to update the hash stored as the 

file’s entry in order to point to the new data. 

Client module 

Kernel mode 

User mode 

Kernel 

VFS 

Application 

accessing 

filesystem 

Cache management and 

other core client logic 

VFS plug-in 

Service client 

Storage service 

Client workstation 

Storage server 

1 

3 

4 

5 

2 6 



 12  
 

Coda [2] specifies that such file updates should be issued by the client to all replicas simultaneously. 

A change may be considered as successfully committed once it has been confirmed by more than 

two-thirds of the responsible servers. This allows commits to succeed even in the presence of server 

failures or network partitions, and ensures, with high probability, that the change would eventually 

be successfully propagated to all replicas using Byzantine agreement [18], [24]. 

The immutability of data and pointer blocks guarantees that no write conflicts may arise when 

several users are simultaneously accessing distinct logical files pointing to the same physical data. 

When any byte in a resource is changed, its hash would also change, and therefore needs to be 

stored at a separate address. 

However, write conflicts may arise when users simultaneously access the same logical file, since 

updates to the directory block may result in inconsistencies. We shall assume an optimistic 

concurrency control strategy, where simultaneous updates are permitted locally, but would get 

detected upon being committed to the servers due to a differing timestamp. We will follow the 

suggestion of Coda [2] and provide the users with tools to resolve these conflicts manually, similarly 

to a version-control system. 

Finally, we shall also borrow the notion of callback promises from AFS [1] and Coda [2], allowing 

clients to be notified promptly when a file they have open has been modified by another user. Note 

that the callback promise needs to be established by the server responsible for the directory block. 

Disconnected Operation 

Coda [2] caches entire files within its client module in order to improve performance by exploiting 

both temporal locality (when the same data is accessed again later) and spatial locality (when other 

portions of the same file are accessed). Kistler & Satyanarayanan [25] argue that this caching may 

also be used for improving availability. By persisting the cache to the local disk, Coda would ensure 

that its client module would be capable of permitting access to the files even when the workstation 

is restarted whilst disconnected. 

Whilst AFS [1] uses a least recently used (LRU) algorithm for determining which data to retain in its 

cache, Coda [2] complements this with “hoard profiles”, through which each user may specify a list 

of important files that should always be maintained in cache [25]. 

Any writes that the user performs in disconnected mode would get logged by the client module. 

Once the client reconnects, it would propagate such updates to the responsible servers, using the 

same timestamp-based concurrency control as discussed above. It should also re-establish any 

callback promises for its cached files. 

Security 

Each client is expected to authenticate with the system before it may access any directories or files. 

We recommend the use of Kerberos [26], a network authentication protocol that relies on a set of 

Authentication Servers (AS). Each user would initially supply their password to the client program, 

which gets hashed using a one-way function and transmitted to the Key Distribution Center (KDC). 
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The KDC returns a Ticket Granting Ticket (TGT), which may be subsequently used for generating 

tickets (session keys) whenever the client needs to communicate with any storage server. 

Access control only needs to be enforced when accessing directory entries. There is no need to 

enforce security on the data (or pointer) blocks – since their address constitutes a cryptographic 

hash, it is computationally infeasible for an attacker to come up with the address for a file to which 

they did not already have access. Given that the hash space is massive (2  possibilities, where   is 

the number of bits in the hash), brute-force enumeration will not yield any results either. 

An extrinsic risk is that hashes for files may be leaked to unauthorized users through external 

applications, since a file’s hash in itself is not generally considered to be sensitive information. To 

avoid this scenario, we should ensure that the hashes used in our system are salted. 

Integrity of data and pointer blocks may be verified by re-computing their hashes and checking that 

it matches the stored one [6]. Per the avalanche effect, corruption in just a single byte would result 

in a completely different hash. Storage servers may periodically perform such verification in the 

background, and request the correct data from any of their replicas when corruption is detected. 

Harnik et al. [27] demonstrate a side-channel attack that applies to several systems employing cross-

user client-side deduplication, whereby an attacker may deduce the prior existence of a specific file 

based on whether the system recognizes its hash. This attack may be prevented either by moving 

data deduplication to the server side, or by introducing random delays. 

Conclusion 

To conclude, we shall summarize how our system design meets all the requirements set out for 

Onefile.  

Single-instance storage of physical files is achieved by deterministically deriving their target address 

from their contents using a cryptographic hash function. Logical aliases are allowed to span 

directories and users since they are stored within their respective parent directories, along with their 

specific filenames and permissions. Consequently, access control is enforced based on this file 

metadata. The avalanche effect ensures that any change to a file’s content would result in a new 

hash, thereby guaranteeing that the new version is stored at a different address from the old. 

Although identical data blocks resolve to a single address, each address is stored not only by the 

immediate hash successor, but also across a number of replicas. When a server fails, the network 

uses stabilization mechanisms to ensure that its contents are made available on another server. 

Users may work offline by accessing their files from the local cache stored through in the client 

module. When the connection is re-established, the client module would propagate any logged 

changes from the cached files to the servers, and only assume success when the servers are in a 

state that would reach Byzantine agreement, thereby ensuring consistency. 

The client module integrates seamlessly with the local operating system’s name space by registering 

itself with the VFS, allowing the kernel to issue callbacks to it whenever the user traverses its mount 

point. 
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Finally, we are confident that the core design of our system may scale to infrastructures of any size, 

since it is modelled on peer-to-peer frameworks that have already successfully demonstrated robust 

operation on Internet-scale applications.  
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