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Context - Hardware

Samsung Exynos
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ARM big-LITTLE
(Heterogenenous),

4xARM A15,
4xARM A7,
2-16 cores GPU,
5 Watt.
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Context - Hardware
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256 VLIW cores,

16 clusters of 16 cores,
Torus NoC,

10 Watts.
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Context - Problematic

Mapping problem

How to select which core for
which task?

Very Hard problem!

=]

=]

=]

Usually (automatically)
solved for streaming apps.

Ex. Streamlt, SigmaC

(=]
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Context - Software

The SigmaC dataflow language [Goubier et al., 2011]

agent Reader (N) {
interface {
spec {/* N outputs */}}

agent Writer (N) {
interface {
spec {/* N inputs */}}

agent Worker {
interface {
spec {in[1];out[1]1}}

void start () { void start() {

/* £ => out */ /* in => £ */
} } }
} } }

void start(in,out)) {
/* in => out */

subgraph root {
map {
agent inA = new Reader (N+1);
agent outA = new Writer (N+1);
agent w[N+1] = new Worker();
for (int i=0;1i<=N;i++) {
connect (inA.out[i],w[i].in);
connect (w[i] .out,outA.in[i]);
}
}
}
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What is a dataflow model! )
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Context - Dataflow models
Kahn Process Networks [Kahn, 1974]

A set of processes (7)) communicating through channels (\A)

Channels are unbound FIFO buffers

Reading is a blocking operation

[m]

[m]

[m]

o A deterministic model

Undecidable analysis problems
Kahn Networks don't allow buffer sizing [Buck et Lee, 1993].
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Context - Dataflow models

Synchronous Dataflow [Lee et Messerschmitt, 1987]

o I, is the number of tokens produced,

o O, is the number of tokens consumed,

o The initial quantity of tokens is My(a).

o Synchronous because ... th X |y = th, x 0, Vae A

A static model

It is possible to study its behavior at compile-time: this model is
static. Several fundamental problems become decidable.
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Context - Dataflow models
Cyclo-Static Dataflow [Bilsen et al., 1995]

j [2'3%1} 0(3[2,5] ‘

o Tasks are divided in ¢(t) phases

= in,(k), the production rate of t, the k*h phase of t

s out,(k’), the consumption rate of the k'*" phase of t’.
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Context - Solution

The dataflow compilation
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Liveness -

Liveness and Consistency

Liveness

A dataflow is alive, if there exists a task execution sequence which
can be repeated infinitely often.

Consistency

A dataflow is consistent if there exists a task execution sequence
which can be repeated infinitely often with bounded memory
constraint.
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Liveness -

Liveness and Consistency - Example

Example

S= [Ti> ij Tkv Tka TI]

3: Alive and consistent.
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Throughput - Problem definition

As soon as possible scheduling

o Task duration (WCET):
o d(A;) =3, d(A) =1
o d(Bl) = 2, d(Bg) =1
o d(B3) = 2, d(Cl) =1

o No resource constraint

| | lduldel | A4l | A
Bs | By [B] By | By |By| B3 | By |B| B3 | By
L lallaf | [ [la] [ fa] Jaf [ [ |
Transient Steady
state state
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Throughput - Problem definition

Normalized period

n

Functional frequency: Th® = lim —— .
q y t n—o00 S<t’ n)

When a CSDFG has bounded memories, a balance exists between
tasks frequency.

s N
Q; = vteT
Th‘ts
v
A Ao ‘ AL ‘ Ao ‘ ‘ A ‘Az ‘ Ay ‘Az A
B |B2| B3 | BL |B Bs | Bi |Bo| B3 | Bi |Byl B3 | By |B| B3 | By
G G Cl‘ G G Cl‘ G

Thy =6/21 =2/7, QS =21
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Throughput - State of the art

Existing methods
Exact methods ([Ghamarian et al., 2006, Stuijk et al., 2008]):

Ay A2\ A \ Ao \ \ AL \AZ \ Ay \A2 A \
By |Bx| B3 By |By B3 By |By| B3 By |By| B3 By |Bx| B3 B
[ Jal [[[la] [T lalfa] [T ] ]al []a] |af [ ] |

Execution pattern, Thy = 6/21 = 2/7

Optimal X Exponential complexity

Approximate methods ([Benabid et al., 2012, Bodin et al., 2013]):

o] [ A A E ] Al
B, [B, g [ B |5 B; | B, |B, B; | B |B, By | B, |B,
\ al | [ lal | 4] al | [ la] [ | 4]

Period, Thy = 1/4

Polynomial X Lower bound
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Throughput - Periodic scheduling of CSDFG

Definition of precedence relations
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Throughput - Periodic scheduling of CSDFG

Definition of a valid schedule

Definition (Valid schedule)

If a precedence relation exists between two executions (tx, n) and
(t'kr, 0"y, a valid schedule must check

S(t'w, ') > S(tx, n) + d(tk).
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Throughput - Periodic scheduling of CSDFG

A precedence relation between two executions

Lemma (existence condition)

Let a buffer a = (t,t"). A precedence relation exists between (ty, n)
and (t'y, n") if and only if

ina(k) > Mo(a)+1x(tx, n)—Oa(t ks, n") > max{0, in,(k)—out,(k')}.

Between (A, 1) and (By,2) ?
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Throughput - Periodic scheduling of CSDFG

Precedence relation between two phases

Lemma (Existence condition between two phases)

A buffer a = (t, t') induce a precedence relation between (ty, n) and
(t'kr, 0"y if and only if

Oc;"i”(k, k') < a(n,n') <al®(k, k).

Between A; and B; ?
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Throughput - Periodic scheduling of CSDFG

Periodic constraints

We finally get the following constraint:

Theorem (Periodic constraints)

Precedence relations induced by a buffer a = (t, t') are checked by a
periodic schedule S if and only if

mank/)
St 1) — S{ty, 1) > d(t +Q‘qu
(t'e, 1) = S(tk, 1) > d(t) + Qg N % i,

Yk, k') € {1,-- ,p(t)} x {1, -+, o(t)} with aT"(k, k') < aT>(k, k).
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Throughput - Periodic scheduling of CSDFG

Computation of a periodic schedule

These constraints can be used to compute a periodic
schedule with maximal throughput:
Minimize Qg with
Va = (t,t') € A V(k,K') € V(a),
S(t' 4, 1) — S(te, 1) > d(ti) + QF x u’;\lél)
Vee Tk e {1 o0} St 1) eRE
Q5 e R — {0}

A linear program
Polynomial (Maximum Cycle Ratio Problem)
Maximal periodic throughput

X Upper bound of the maximal throughput
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Memory - Definition

Buffer sizing

o Buffer sizing impact liveness

o But also performances

12 5 [

3 tokens max: 4 tokens max:

t |2 1 t2 f | t2 t1 2 tl‘ ty\tp |ty oty | tp |ty tp |ty B2ty |t |ty |t
/ / ! / / / / ! / / / / / / /
L1 t 51 L1 L1 L1 ‘ bbb hlbhlh blbhlh
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Memory - State of the art

Existing solutions

o Exact method [Stuijk et al., 2008]

o Exploring a (combinatorial) solution space
o Maximal throughput evaluation (ASAP)
o Too long for existing cases

o Approximative methods [Benazouz et Munier-Kordon, 2013]

o A maximal throughput is fixed
o Only periodic schedules are considered

o Phases execution pattern is fixed.
shifty shifts shifty shifts
> >

Phases fixées HCm) @:3) | (1) @2:3) |

période d'exécution
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Memory - How to compute it ?

Buffer sizing with throughput constraint

(O m—(r)
[ __T0]
D Bt )
b(B)

-n

We adapt the linear formulation:
Minimize Zaer(A) Mo(a) with
Va=(t,t') € A V(k k') € Y(a),
S(t'1r,1) = S(te, 1) > d(te) + QG x
Va' = (t,t') € Fb(A),V(k, k') € Y(a'),

ol (k, K')
i x N¢

S 1) - S(t01) > d(t) + Q5 x “2 0 k)
iy X th

Vte T,Yke{1l,--,0(t)}, S{tx,1) € RT
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Mapping - definition

The buffer sizes are known, we need now to select which processor
for which task. This is hard, the problem is splitted into
sub-problems.
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Mapping - Partitioning

Partitioning
|
v T
) 4 V-
A K
AL A L
) 4 ) 4
v T2/

Producing task groups which will be executed on the same core.
Usually solved off-line using meta-heuristics (genetic, taboo,
machine learning, etc.).
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Mapping - Mapping
Mapping

This is the actual association of task groups with computation units.
This can be solved at compile-time, but also at run-time using task
migration.
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Mapping - Routing

Routing

For some platforms this is required to determine the actual
communication in the NoC. This may be optimally solved with a
deterministic NoC.
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Conclusion

o Mapping is a hard problem

[m]

Depends on how parallelism and tasks represented

[m]

Wide open research area

[m]

Large research interest at ICSA Edinburgh
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