Lecture 6: Scheduling

Michael O’Boyle
Embedded Software
Overview

• Definitions of real time scheduling
• Classification
• Aperiodic no dependence
 • No preemption EDD
 • Preemption EDF
 • Least Laxity
• Periodic
 • Rate Monotonic
 • Earliest deadline first
• Summary
Real time

Assume that we are given a task graph \(G=(V,E) \).

Def.: A **schedule** \(\tau \) of \(G \) is a mapping
\[
V \rightarrow D_t
\]
of a set of tasks \(V \) to start times from domain \(D_t \).

\[
G=(V,E) \quad \tau(1) \quad \tau(2) \quad \tau(3) \quad \tau(4)
\]

Typically, schedules have to respect a number of constraints, incl. resource constraints, dependency constraints, deadlines. **Scheduling** = finding such a mapping.
Classification

Def. A time-constraint (deadline) is called **hard** if not meeting that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called **soft**.

We will focus on hard deadlines.
Definitions

• Soft and hard deadlines

• Scheduling for periodic and aperiodic tasks
 • sporadic tasks

• Preememptive vs non-preemptive
 • Suspend tasks. Can result in unpredictable delays

• Static and dynamic scheduling
 • Static. Uses a priori knowledge about deadlines and arrival times
 • Timer triggers dispatch based on table. Predictable
 • Dynamic useful in reacting to sporadic events
 • Based on only what know so far

• Dependent vs independent tasks

<table>
<thead>
<tr>
<th>Time</th>
<th>Action</th>
<th>WCET</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>start T1</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>send M5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>stop T1</td>
<td>20</td>
</tr>
<tr>
<td>38</td>
<td>start T2</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>send M3</td>
<td></td>
</tr>
</tbody>
</table>
Aperiodic no predecessors

Let \(\{T_i\} \) be a set of tasks. Let:

- \(c_i \) be the execution time of \(T_i \),
- \(d_i \) be the **deadline interval**, that is, the time between \(T_i \) becoming available and the time until which \(T_i \) has to finish execution.
- \(l_i \) be the **laxity** or **slack**, defined as \(l_i = d_i - c_i \)
- \(f_i \) be the finishing time.
EDD for uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due date (deadline) first.

EDD requires all tasks to be sorted by their (absolute) deadlines. Hence, its complexity is $O(n \log(n))$.

EDD is optimal for this limited setting Proof Buttazzo 2002
EDF: earliest deadline first

- Different arrival times: Preemption potentially reduces lateness.
 - optimal with respect to minimizing the maximum lateness. Horn74
 - implement with sorted queue $O(n^2)$
EDF: earliest deadline first

- Different arrival times: Preemption potentially reduces lateness.
 - optimal with respect to minimizing the maximum lateness. Horn74
 - implement with sorted queue $O(n^2)$
EDF: earliest deadline first

- Different arrival times: Preemption potentially reduces lateness.
 - optimal with respect to minimizing the maximum lateness. Horn74
 - implement with sorted queue $O(n^2)$

<table>
<thead>
<tr>
<th>Task</th>
<th>Arrival</th>
<th>Duration</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>0</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>T_2</td>
<td>4</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>T_3</td>
<td>5</td>
<td>10</td>
<td>29</td>
</tr>
</tbody>
</table>

Earlier deadline → preemption
Later deadline → no preemption
Least Laxity: detects missed deadlines early

Priorities = decreasing function of the laxity (lower laxity implies higher priority); changing priority; preemptive.

<table>
<thead>
<tr>
<th></th>
<th>arrival</th>
<th>duration</th>
<th>deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>0</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>T_2</td>
<td>4</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>T_3</td>
<td>5</td>
<td>10</td>
<td>29</td>
</tr>
</tbody>
</table>

$l(T_1)$ = 33 - 15 - 6 = 12
$l(T_2)$ = 29 - 15 - 2 = 12

$l(T_1)$ = 33 - 4 - 6 = 23
$l(T_2)$ = 28 - 4 - 3 = 21
$l(T_3)$ = 29 - 5 - 10 = 14
Scheduling without preemption

Lemma: If preemption is not allowed, optimal schedules may have to leave the processor idle at certain times.

- Preemption not allowed: optimal schedules may leave processor idle to finish tasks with early deadlines arriving late.
 - Knowledge about the future is needed for optimal scheduling algorithms
 - No online algorithm can decide whether or not to keep idle.
- EDF is optimal among all scheduling algorithms not keeping the processor idle at certain times.
- If arrival times are known a priori, the scheduling problem becomes NP-hard in general. B&B typically used.
Periodic no predecessors

Each execution instance of a task is called a **job**.

Notion of optimality for aperiodic scheduling does not make sense for periodic scheduling.

For periodic scheduling, the best that we can do is to design an algorithm which will always find a schedule if one exists.

- A scheduler is defined to be **optimal** iff it will find a schedule if one exists.
Periodic Scheduling

Let \(\{T_i\} \) be a set of tasks. Let:
- \(p_i \) be the period of task \(T_i \),
- \(c_i \) be the execution time of \(T_i \),
- \(d_i \) be the **deadline interval**, that is, the time between \(T_i \) becoming available and the time until which \(T_i \) has to finish execution.
- \(l_i \) be the **laxity** or **slack**, defined as \(l_i = d_i - c_i \)
- \(f_i \) be the finishing time.

Average utilization:
\[
\mu = \sum_{i=1}^{n} \frac{c_i}{p_i}
\]

\(\mu \leq m \)

Necessary condition for schedulability (with \(m=\)number of processors):

![Diagram of task scheduling and utilization](attachment:task_scheduling_diagram.png)
Rate Monotonic

RM policy: The priority of a task is a monotonically decreasing function of its period.

At any time, a highest priority task among all those that are ready for execution is allocated.

T_1 preempts T_2 and T_3.

T_2 and T_3 do not preempt each other.

Less than 0.7
Rate Monotonic

RM policy: The priority of a task is a monotonically decreasing function of its period.

At any time, a highest priority task among all those that are ready for execution is allocated.

\[\mu = \sum_{i=1}^{n} \frac{c_i}{p_i} \leq n(2^{1/n} - 1) \]

- \(T_1 \) preempts \(T_2 \) and \(T_3 \).
- \(T_2 \) and \(T_3 \) do not preempt each other.

Less than 0.7
Failing RMS

Task 1: period 5, execution time 3
Task 2: period 8, execution time 3
\[\mu = \frac{3}{5} + \frac{3}{8} = \frac{24}{40} + \frac{15}{40} = \frac{39}{40} \approx 0.975 \]
\[2(2^{1/2} - 1) \approx 0.828 \]
EDF can dynamically adjust priorities

RMS:

EDF:
Comparison between RMS and EDF

<table>
<thead>
<tr>
<th></th>
<th>RMS</th>
<th>EDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priorities</td>
<td>Static</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Works with OS with fixed priorities</td>
<td>Yes</td>
<td>No*</td>
</tr>
<tr>
<td>Uses full computational power of processor</td>
<td>No, just up till $\mu=n(2^{1/n}-1)$</td>
<td>Yes</td>
</tr>
<tr>
<td>Possible to exploit full computational power of processor without provisioning for slack</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Unless the plug-in by Slomka et al. is added.
Summary

• Definitions of real time scheduling

• Classification

• Aperiodic no dependence
 • No preemption EDD
 • Preemption EDF
 • Least Laxity

• Periodic
 • Rate Monotonic
 • Earliest deadline first