Lecture 6: Scheduling

Michael O'Boyle Embedded Software

Overview

- Definitions of real time scheduling
- Classification
- Aperiodic no dependence
 - No preemption EDD
 - Preemption EDF
 - Least Laxity
- Periodic
 - Rate Monotonic
 - Earliest deadline first
- Summary

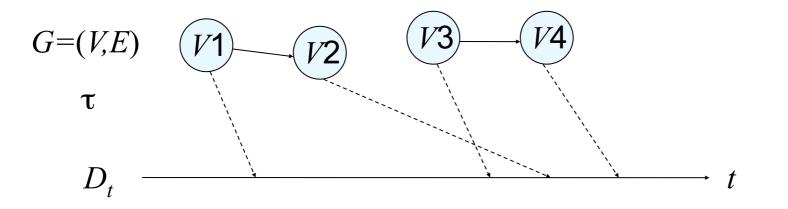
Real time

Assume that we are given a task graph G=(V,E).

Def.: A schedule τ of *G* is a mapping

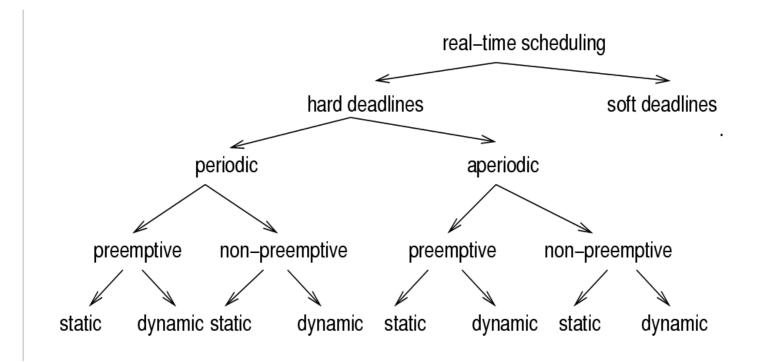
 $V \rightarrow D_t$

of a set of tasks V to start times from domain D_t .



Typically, schedules have to respect a number of constraints, incl. resource constraints, dependency constraints, deadlines. **Scheduling** = finding such a mapping.

Classification



Def.: A time-constraint (deadline) is called **hard** if not meeting that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called **soft**.

We will focus on hard deadlines.

Definitions

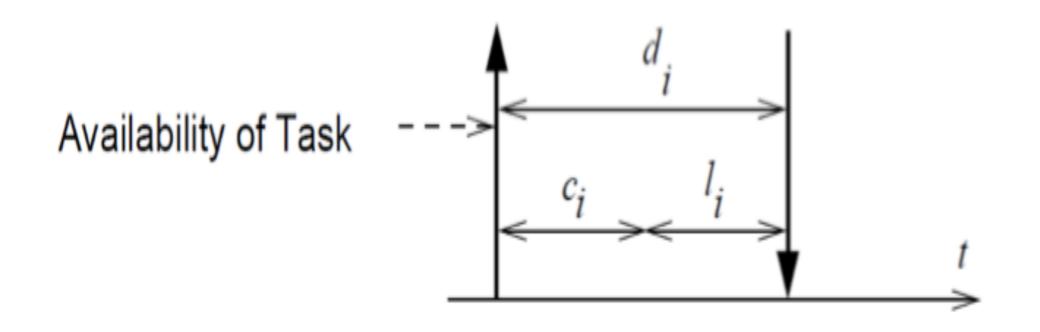
- Soft and hard deadlines
- Scheduling for periodic and aperodic tasks
 - sporadic tasks
- Preememptive vs non-preemptive
 - Suspend tasks. Can result in upredictable delays
- Static and dynamic scheduling
 - Static. Uses a priori knowledge about deadlines and arrival times
 - Timer triggers dispatch based on table. Predictable
 - Dynamic useful in reacting to sporadic events
 - Based on only what know so far
- Dependent vs independent tasks

Time	Action	WCET		
10	start T1	12		\frown
17	send M5		>	()
22	stop T1			Dianatahan
38	start T2	20		Dispatcher
47	send M3			

Aperiodic no predecessors

Let $\{T_i\}$ be a set of tasks. Let:

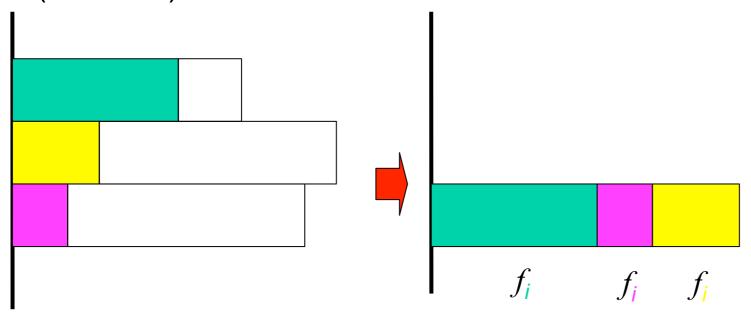
- c_i be the execution time of T_i ,
- *d_i* be the **deadline interva**l, that is,
 the time between *T_i* becoming available
 and the time until which *T_i* has to finish execution.
- l_i be the **laxity** or **slac**k, defined as $l_i = d_i c_i$
- f_i be the finishing time.



EDD for uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due date (deadline) first.

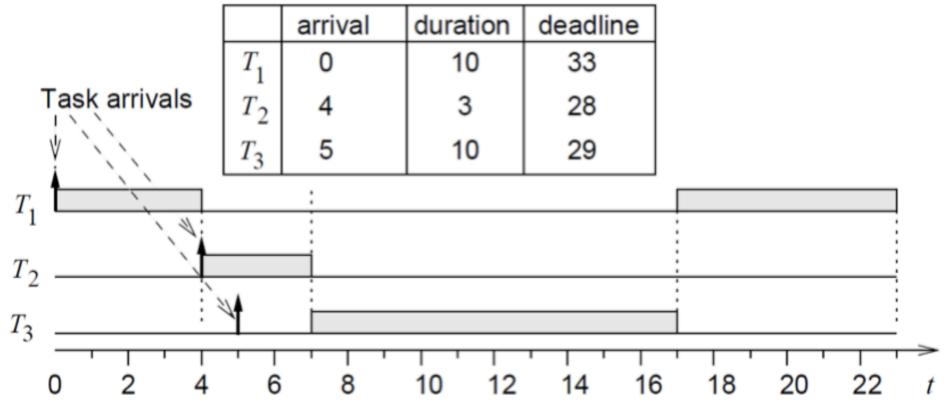


EDD requires all tasks to be sorted by their (absolute) deadlines. Hence, its complexity is $O(n \log(n))$.

EDD is optimal for this limited setting Proof Buttazzo 2002

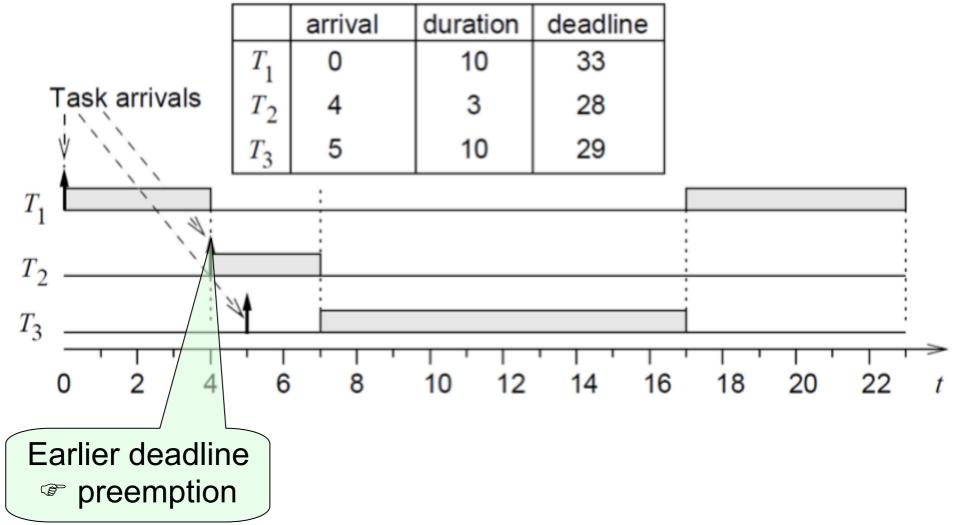
EDF: earliest deadline first

- Different arrival times: Preemption potentially reduces lateness.
 - optimal with respect to minimizing the maximum lateness. Horn74
 - implement with sorted aueue O(n^2)



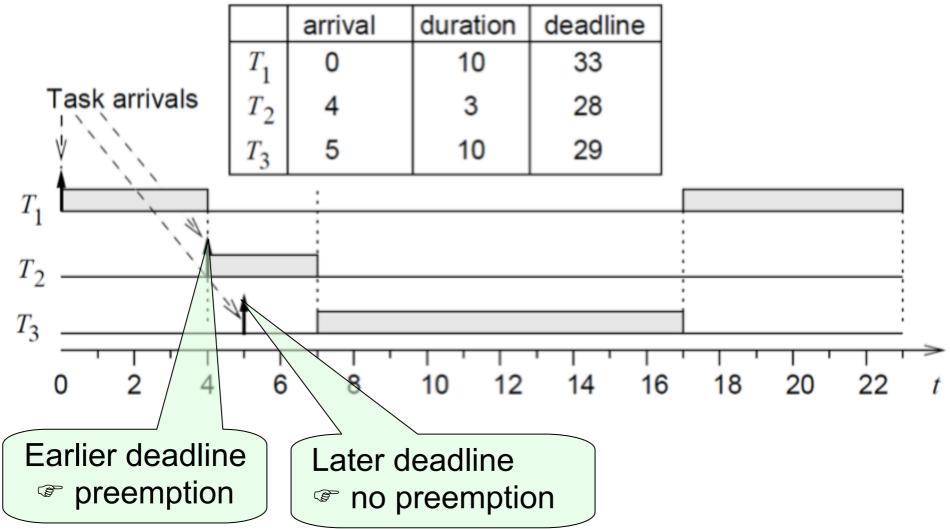
EDF: earliest deadline first

- Different arrival times: Preemption potentially reduces lateness.
 - optimal with respect to minimizing the maximum lateness. Horn74
 - implement with sorted aueue O(n^2)



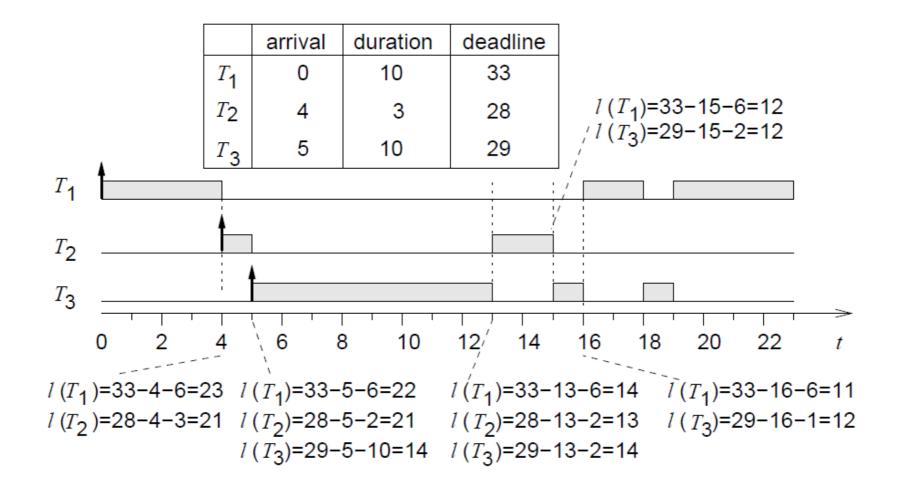
EDF: earliest deadline first

- Different arrival times: Preemption potentially reduces lateness.
 - optimal with respect to minimizing the maximum lateness. Horn74
 - implement with sorted aueue O(n^2)



Least Laxity: detects missed deadlines early

Priorities = decreasing function of the laxity (lower laxity implies higher priority); changing priority; preemptive.



Scheduling without preemption

Lemma: If preemption is not allowed, optimal schedules may have to leave the processor idle at certain times.

Proof: Suppose: optimal schedulers never leave processor idle.

- Preemption not allowed: optimal schedules may leave processor idle to finish tasks with early deadlines arriving late.
 - Knowledge about the future is needed for optimal scheduling algorithms
 - No online algorithm can decide whether or not to keep idle.
- EDF is optimal among all scheduling algorithms not keeping the processor idle at certain times.
- If arrival times are known a priori, the scheduling problem becomes NP-hard in general. B&B typically used.

Periodic no predecessors

•Each execution instance of a task is called a **job**.

•Notion of optimality for aperiodic scheduling does not make sense for periodic scheduling.

•For periodic scheduling, the best that we can do is to design an algorithm which will always find a schedule if one exists.

•A scheduler is defined to be **optimal** iff it will find a schedule if one exists.

Periodic Scheduling

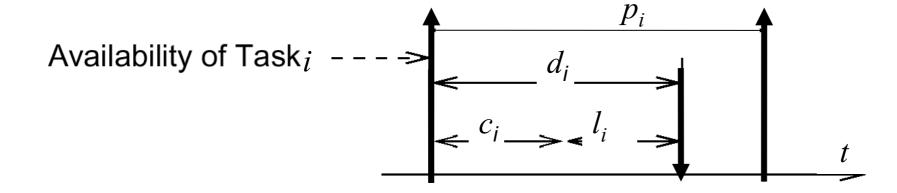
Let $\{T_i\}$ be a set of tasks. Let:

- p_i be the period of task T_i ,
- c_i be the execution time of T_i ,
- *d_i* be the **deadline interva**l, that is,
 the time between *T_i* becoming available
 and the time until which *T_i* has to finish execution.
- l_i be the **laxity** or **slac**k, defined as $l_i = d_i c_i$
- f_i be the finishing time.

Average utilization: $\mu = \sum_{i=1}^{n} \frac{C_i}{p_i}$

 $\mu \leq m$

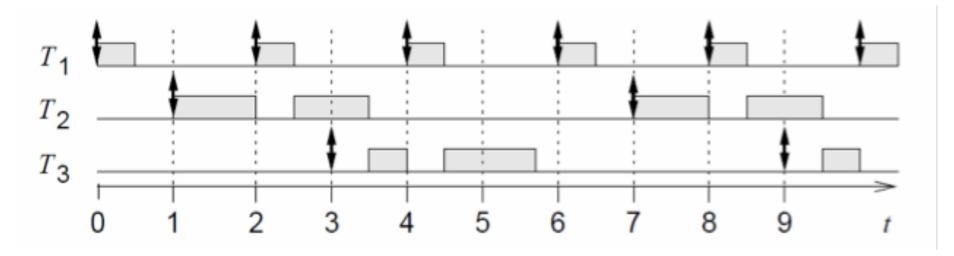
Necessary condition for schedulability (with *m*=number of processors):



Rate Monotonic

RM policy: The priority of a task is a monotonically decreasing function of its period.

At any time, a highest priority task among all those that are ready for execution is allocated.



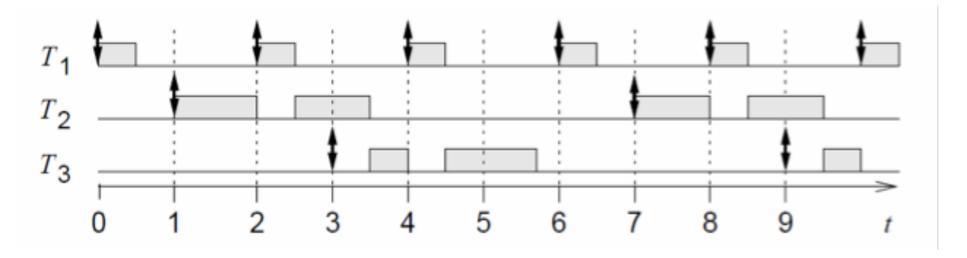
 T_1 preempts T_2 and T_3 . T_2 and T_3 do not preempt each other.

Less than 0.7

Rate Monotonic

RM policy: The priority of a task is a monotonically decreasing function of its period.

At any time, a highest priority task among all those that are ready for execution is allocated.

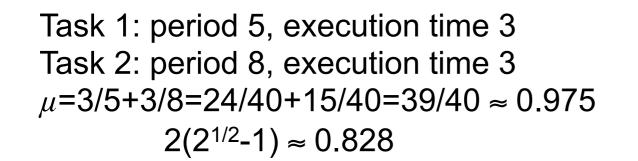


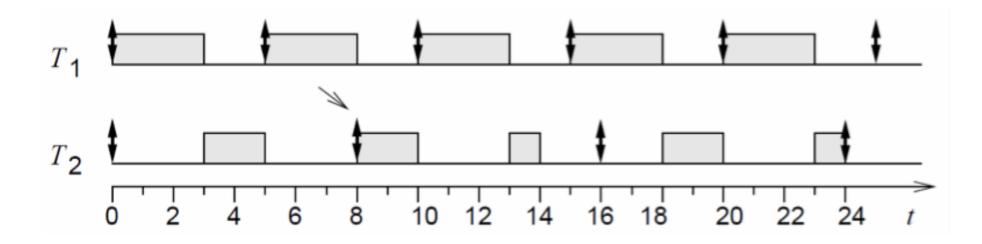
$$\mu = \sum_{i=1}^{n} \frac{c_i}{p_i} \le n(2^{1/n} - 1)$$

 T_1 preempts T_2 and T_3 . T_2 and T_3 do not preempt each other.

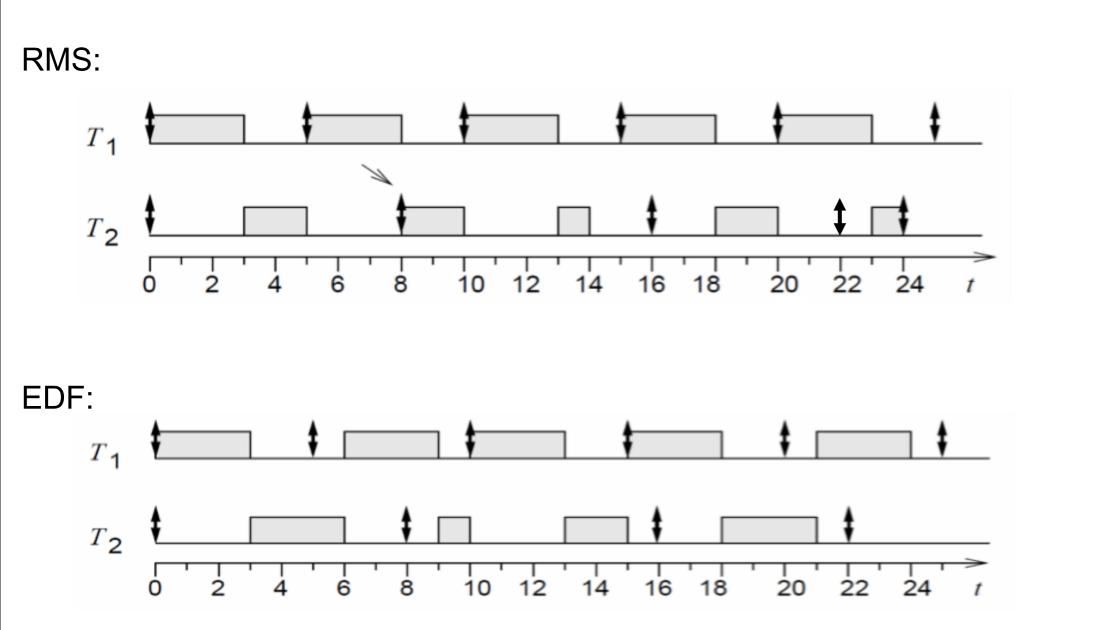
Less than 0.7

Failing RMS





EDF can dynamically adjust priorities



Comparison between RMS and EDF

	RMS	EDF
Priorities	Static	Dynamic
Works with OS with fixed priorities	Yes	No*
Uses full computational power of processor	No, just up till $\mu = n(2^{1/n}-1)$	Yes
Possible to exploit full computational power of processor without provisioning for slack	No	Yes

* Unless the plug-in by Slomka et al. is added.

Summary

- Definitions of real time scheduling
- Classification
- Aperiodic no dependence
 - No preemption EDD
 - Preemption EDF
 - Least Laxity
- Periodic
 - Rate Monotonic
 - Earliest deadline first