
Lecture 6: Scheduling

Michael O’Boyle
Embedded Software

Wednesday, 12 February 2014

Overview

• Definitions of real time scheduling

• Classification

• Aperiodic no dependence

• No preemption EDD

• Preemption EDF

• Least Laxity

• Periodic

• Rate Monotonic

• Earliest deadline first

• Summary

Wednesday, 12 February 2014

Real time
Assume that we are given a task graph G=(V,E).

Def.: A schedule τ of G is a mapping
 V → Dt

of a set of tasks V to start times from domain Dt.

V1 V2 V4V3

t

G=(V,E)

Dt

τ

Typically, schedules have to respect a number of constraints,
incl. resource constraints, dependency constraints, deadlines.
Scheduling = finding such a mapping.

Wednesday, 12 February 2014

Classification

Def.: A time-constraint (deadline) is called hard if not meeting
that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called soft.
We will focus on hard deadlines.

Wednesday, 12 February 2014

Definitions

• Soft and hard deadlines

• Scheduling for periodic and aperodic tasks

• sporadic tasks

• Preememptive vs non-preemptive

• Suspend tasks. Can result in upredictable delays

• Static and dynamic scheduling

• Static. Uses a priori knowledge about deadlines and arrival times

• Timer triggers dispatch based on table. Predictable

• Dynamic useful in reacting to sporadic events

• Based on only what know so far

• Dependent vs independent tasks

Wednesday, 12 February 2014

Aperiodic no predecessors

Let {Ti } be a set of tasks. Let:
§ ci be the execution time of Ti ,
§ di be the deadline interval, that is,

 the time between Ti becoming available
 and the time until which Ti has to finish execution.

§ li be the laxity or slack, defined as li = di - ci

§ fi be the finishing time.

Wednesday, 12 February 2014

EDD for uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due
date (deadline) first.

EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

fifi fi

EDD is optimal for this limited setting Proof Buttazzo 2002

Wednesday, 12 February 2014

EDF: earliest deadline first

• Different arrival times: Preemption potentially reduces lateness.

• optimal with respect to minimizing the maximum lateness. Horn74
• implement with sorted queue O(n^2)

Wednesday, 12 February 2014

EDF: earliest deadline first

• Different arrival times: Preemption potentially reduces lateness.

• optimal with respect to minimizing the maximum lateness. Horn74
• implement with sorted queue O(n^2)

Earlier deadline
F preemption

Wednesday, 12 February 2014

EDF: earliest deadline first

• Different arrival times: Preemption potentially reduces lateness.

• optimal with respect to minimizing the maximum lateness. Horn74
• implement with sorted queue O(n^2)

Later deadline
F no preemption

Earlier deadline
F preemption

Wednesday, 12 February 2014

Least Laxity: detects missed deadlines early

Priorities = decreasing function of the laxity
(lower laxity implies higher priority); changing priority; preemptive.

Wednesday, 12 February 2014

Scheduling without preemption

• Preemption not allowed: optimal schedules may leave processor idle to finish tasks
with early deadlines arriving late.

• Knowledge about the future is needed for optimal
 scheduling algorithms

• No online algorithm can decide whether or not to keep idle.

• EDF is optimal among all scheduling algorithms not keeping the processor idle
at certain times.

• If arrival times are known a priori, the scheduling problem becomes NP-hard in
general. B&B typically used.

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor
idle.

Wednesday, 12 February 2014

Periodic no predecessors

•Each execution instance of a task is called a job.

•Notion of optimality for aperiodic scheduling does not make sense for periodic
scheduling.

•For periodic scheduling, the best that we can do is to design an algorithm which will
always find a schedule if one exists.

•A scheduler is defined to be optimal iff it will find a schedule if one exists.

T1

T2

Wednesday, 12 February 2014

Periodic Scheduling

Let {Ti } be a set of tasks. Let:
§ pi be the period of task Ti,
§ ci be the execution time of Ti ,
§ di be the deadline interval, that is,

 the time between Ti becoming available
 and the time until which Ti has to finish execution.

§ li be the laxity or slack, defined as li = di - ci

§ fi be the finishing time.

li

di

ci t

i
pi

Average utilization:

Necessary condition for schedulability
(with m=number of processors):

Wednesday, 12 February 2014

Rate Monotonic

RM policy: The priority of a task is a monotonically
decreasing function of its period.
At any time, a highest priority task among all those that are
ready for execution is allocated.

T1 preempts T2 and T3.
T2 and T3 do not preempt each other. Less than 0.7

Wednesday, 12 February 2014

Rate Monotonic

RM policy: The priority of a task is a monotonically
decreasing function of its period.
At any time, a highest priority task among all those that are
ready for execution is allocated.

T1 preempts T2 and T3.
T2 and T3 do not preempt each other. Less than 0.7

Wednesday, 12 February 2014

Failing RMS

Task 1: period 5, execution time 3
Task 2: period 8, execution time 3
µ=3/5+3/8=24/40+15/40=39/40 ≈ 0.975
 2(21/2-1) ≈ 0.828

Wednesday, 12 February 2014

EDF can dynamically adjust priorities

RMS:

EDF:

Wednesday, 12 February 2014

Comparison between RMS and EDF

RMS EDF

Priorities Static Dynamic

Works with OS with fixed
priorities

Yes No*

Uses full computational
power of processor

No,
just up till µ=n(21/n-1)

Yes

Possible to exploit full
computational power of
processor without
provisioning for slack

No Yes

* Unless the plug-in by Slomka et al. is added.

Wednesday, 12 February 2014

Summary

• Definitions of real time scheduling

• Classification

• Aperiodic no dependence

• No preemption EDD

• Preemption EDF

• Least Laxity

• Periodic

• Rate Monotonic

• Earliest deadline first

Wednesday, 12 February 2014

