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Overview

• Power and Energy


• Processors


• Energy Efficiency


• Code Size

• DSPs


• Address generating Units


• Specialised Arithmetic

• Multimedia Instructions 


• VLIW

• Reconfigurable



Power and Energy
• Energy and Power  are first class issue in embedded and systems design


• Battery life

• Energy density, thermal

• Environment - no more data centres in London


• Energy not always the same


• A processor that is more power-hungry but takes less time may use 
less energy
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“inherent power 

efficiency of silicon“



Processors

• Vast majority of embedded systems based on (semi-)programmable 
processors rather than specialised hardware (ASICs)


• Ease of programming, upgrade or change of use


• Variety of ways to manage power
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Dynamic Voltage Scaling

• Decreasing voltage slows down linearly, quadratic power saving


• Intel SpeedStep has 6 speed/voltage settings


• ARM has big.LITTLE offering - c 18 power levels! 

Power consumption of CMOS 
circuits (ignoring leakage): Delay for CMOS 



Multi-core: Reduce Power for same performance?

Basic equations  
Power:      P ~ VDD² , 
Maximum clock frequency:   f ~ VDD , 
Energy to run a program:  E = P × t, with: t = runtime (fixed) 
Time to run a program:   t ~ 1/f 

Changes due to parallel processing, with β operations per clock: 

Clock frequency reduced to:   f’ = f / β, 
Voltage can be reduced to:  VDD’ =VDD / β, 
Power for parallel processing:  P° = P / β ² per operation, 
Power for β operations per clock:  P’ = β × P° = P / β,  
Time to run a program is still:   t’ = t, 
Energy required to run program:  E’ = P’ × t = E / β 

Argument in favour of voltage scaling   and parallel processing 

Rough 
approximations
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Detour in to real power experiments on heterogeneous multicores
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Heterogeneous system 

Want to partition programs to minimize time and energy

Challenging hardware,  best partition depends on criteria 
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Energy Measurement - 3
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Figure: Measurement
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Energy Measurement - 2

(a) pandaboard (b) oscilloscope

Figure: Board and Oscilloscope
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Measuring energy 
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Matrix Multiplication : Results Individual - 1
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Figure: Unoptimized Matrix Multiplication Benchmark : Here the A9 is clearly
the fastest processor followed surprisingly by the the M3 and then the DSP. For
energy without idle power, the relative performance changes. The M3 is the best
processor followed by the DSP and then the A9. In terms of EDP, the M3 is the
best processor followed by the A9 and DSP.
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Unoptimised Runtime :  A9>M3>DSP
Energy:     M3>DSP>A9

MxM on a single core, no idle  

ED:          M3>>A9>DSP

Conclusion Use A9 or M3, turn off DSP
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Matrix Multiplication : Results Individual - 2
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Figure: Optimized Matrix Multiplication Benchmark : DSP is the fastest followed
by the A9 and M3. For energy (without idle) the DSP and M3 are very similar
while the A9 is ine�cient. Overall for EDP, DSP is the now the best processor
rather than the worst followed by M3 and A9
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31

Optimised Runtime :    DSP>A9>M3

Energy :      DSP/M3>A9

MxM: optimized, no idle power  

ED :           DSP>M3>>A9

Conclusion DO NOT Use A9 use DSP
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Matrix Multiplication : Results Individual - 3
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Figure: Optimized Matrix Multiplication Benchmark : The DSP has the least
energy followed by the M3 and A9. Runtime is una�ected by how we calculate
energy, so overall for EDP, the DSP is the best processor followed by the M3 and
DSP.
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MxM: including idle power 

Optimised Runtime :    DSP>A9>M3

Energy :      DSP >M3>A9
ED :           DSP>>M3/A9

Conclusion DO NOT Use M3/A9 use DSP
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Partitioning Analysis
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Figure: Partitioning overview of all benchmarks for runtime, energy with and
without idle. Partitioning is di�erent for each benchmark. A9 gets the major
share for runtime in all benchmarks except matm. But for energy without idle, A9
gets no share at all due to its high dynamic energy. The partitioning is similar for
metrics runtime and energy with idle.
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Best Partition across programs 

Best partition/cores varies with programs/optimization

Removal of idle by gating has big impact
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Power Budget
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Figure : Power/Performance pareto : Using all the processors gives better pareto
points than using the CPU only with DVFS.
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Multicores can save power. Minimising energy/power hard 

End of detour 



Code Size

• Memory costs. Reducing code size in ROM can be significant. CISC helps

• Reduction to 65-70 % of original code size 
• 130% of ARM performance with 8/16 bit memory 
• 85% of ARM performance with 32-bit memory

1110  001   01001    0 Rd    0 Rd   0000 Constant

16-bit Thumb instr. 
ADD Rd #constant001   10    Rd     Constant

zero extended
major 
opcode minor 

opcode
source= 
destination

Dynamically 
decoded at 
run-time



Specialised Processors

• Filtering in digital signal processing. Signal at t(s) depends weighted avg of 
k previous inputs

-- outer loop over 
-- sampling times ts 
{ MR:=0; A1:=1; A2:=s-1; 
  MX:=w[s]; MY:=a[0];  
  for (k=0; k <= (n−1); k++) 
   { MR:=MR + MX * MY; 
     MX:=w[A2]; MY:=a[A1]; 
     A1++; A2--; 
    } 
  x[s]:=MR; 
 }

Maps nicely but specialised

ADSP 2100



DSPs

• Specialised processors found in many embedded settings


• Have a number of special features


• Specialised addressing modes

• Separate addressing Unit

• Saturating Arithmetic

• Fixed Point Arithmetic

• Real-time capabilities

• Zero-overhead loops

• Multiple memory banks

• Heterogeneous register files

• Multiply/accumulate instructions



Address generating Units

! Data memory can only be 
fetched with address contained 
in A, 

! but this can be done in parallel 
with operation in main data path 
(takes effectively 0 time). 

! A := A ± 1 also takes 0 time, 
! same for A := A ± M; 
! A := <immediate instruction> 

requires extra instruction 
  Minimize load immediates 



Specialised Arithmetic

! Returns largest/smallest number in case of over/
underflows 

! Example: 
a       0111 
b      +  1001 
standard wrap around arithmetic       (1)0000  
saturating arithmetic    1111 
(a+b)/2:  correct    1000  
  wrap around arithmetic  0000 
  saturating arithmetic + shifted 0111 

! Appropriate for DSP/multimedia applications: 
• No timeliness of results if interrupts are generated for overflows 
• Precise values less important 
• Wrap around arithmetic would be worse.

“almost correct“



Multimedia Instructions
! Multimedia instructions exploit many registers, adders etc are quite wide (32/64 

bit), whereas most multimedia data types are narrow 
• 2-8 values can be stored per register and added. E.g.:

2 additions per instruction; 
no carry at bit 16

a1 a2
32 bits

c1 c2
32 bits

+

! Cheap way of using parallelism 
• SSE instruction set extensions, SIMD instructions

b1 b2
32 bits



VLIW
! Instructions included in long instruction packets. 

! Instruction packets are assumed to be executed in parallel. 

! Fixed association of packet bits with functional units.

! Compiler is assumed to generate these “parallel” packets

! Complexity of finding parallelism is moved from the hardware (RISC/CISC processors) to 
the compiler; 

! Ideally, this avoids the overhead (silicon, energy, ..) of identifying parallelism at run-time. 

A lot of expectations into VLIW machines 

! However, possibly low code efficiency, due to many NOPs 

Explicitly parallel instruction set computers (EPICs) are an extension of VLIW 
architectures: parallelism detected by compiler, but no need to encode parallelism in 1 
word.



MPSoCs

Source: http://www.ti.com/ww/en/omap/omap5/omap5-OMAP5430.html 24



Reconfigurable 

• Custom HW may be too expensive, SW too slow. 

Combine the speed of HW with the flexibility of SW  
• HW with programmable functions and interconnect. 
• Use of configurable hardware; 

common form: field programmable gate arrays (FPGAs) 
Applications: 
! algorithms like de/encryption, 
! pattern matching in bioinformatics, 
! high speed event filtering (high energy physics), 
! high speed special purpose hardware.  

Very popular devices from 
! XILINX, Actel, Altera and others



Reconfigurable Floor plan

Memories typically 
used as look-up 
tables to implement 
any Boolean 
function of ≤ 6 
variables.

Processors typically 
implemented as 
“soft 
cores” (microblaze)



Summary

• Power and Energy


• Processors


• Energy Efficiency


• Heterogeneous multicores


• Code Size

• DSPs


• Address generating Units


• Specialised Arithmetic

• Multimedia Instructions 


• VLIW

• Reconfigurable


