
Lecture 6: Hardware

Michael O’Boyle

Embedded Software

Overview

• Power and Energy

• Processors

• Energy Efficiency

• Code Size

• DSPs

• Address generating Units

• Specialised Arithmetic

• Multimedia Instructions

• VLIW

• Reconfigurable

Power and Energy
• Energy and Power are first class issue in embedded and systems design

• Battery life

• Energy density, thermal

• Environment - no more data centres in London

• Energy not always the same

• A processor that is more power-hungry but takes less time may use
less energy

t

P(t)

E

“inherent power

efficiency of silicon“

Processors

• Vast majority of embedded systems based on (semi-)programmable
processors rather than specialised hardware (ASICs)

• Ease of programming, upgrade or change of use

• Variety of ways to manage power

RUN

SLEEPIDLE

400mW

160µW50mW

90µs

90
µs

10µs

10µs
160ms Pow

er
 

fau
lt

sig

na
l

Power fault
signal

RUN: operational
IDLE: a SW routine may
stop the CPU when not
in use, while monitoring
interrupts
SLEEP: Shutdown of on-
chip activity

Example: STRONGARM SA1100

Dynamic Voltage Scaling

• Decreasing voltage slows down linearly, quadratic power saving

• Intel SpeedStep has 6 speed/voltage settings

• ARM has big.LITTLE offering - c 18 power levels!

Power consumption of CMOS 
circuits (ignoring leakage): Delay for CMOS

Multi-core: Reduce Power for same performance?

Basic equations  
Power: P ~ VDD² , 
Maximum clock frequency: f ~ VDD , 
Energy to run a program: E = P × t, with: t = runtime (fixed) 
Time to run a program: t ~ 1/f

Changes due to parallel processing, with β operations per clock:

Clock frequency reduced to: f’ = f / β, 
Voltage can be reduced to: VDD’ =VDD / β, 
Power for parallel processing: P° = P / β ² per operation, 
Power for β operations per clock: P’ = β × P° = P / β,  
Time to run a program is still: t’ = t, 
Energy required to run program: E’ = P’ × t = E / β

Argument in favour of voltage scaling and parallel processing

Rough
approximations

8

Detour in to real power experiments on heterogeneous multicores

9

OMAP4

Main Memory

Linux

Mailbox

Spinlock

TI SYS/BIOS

M3

TI SYS/BIOS

M3
TI mini−C64X+ DSP

L1 Cache

L2 CacheL1 Cache

L1 Cache L1 Cache

A9 A9

In
te

rc
o

n
n

ec
t

L2 Cache

rpmsg

rpmsg

rpmsg

System Bus

Kiran, Mike (Informatics, UoE) Partitioning data-parallel programs for heterogeneous MPSOCs : Time and energy design space explorationJune 12, 2014 4 / 28

Heterogeneous system

Want to partition programs to minimize time and energy

Challenging hardware, best partition depends on criteria

OMAP4

Main Memory

Linux

Mailbox

Spinlock

TI SYS/BIOS

M3

TI SYS/BIOS

M3
TI mini−C64X+ DSP

L1 Cache

L2 CacheL1 Cache

L1 Cache L1 Cache

A9 A9

In
te

rc
o

n
n

ec
t

L2 Cache

rpmsg

rpmsg

rpmsg

System Bus

Kiran, Mike (Informatics, UoE) Partitioning data-parallel programs for heterogeneous MPSOCs : Time and energy design space explorationJune 12, 2014 4 / 28

10

Energy Measurement - 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20000 40000 60000 80000 100000

m
ill

iW
at

t

Energy Consumption

wo idle
w idle

(a) with vs without idle

-0.4

-0.2

 0

 0.2

 0.4

 0 20000 40000 60000 80000 100000

V
o

lt

Sample Mode

(b) sample

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 20000 40000 60000 80000 100000

V
o

lt

HiRes/Filtering

(c) filtering

Figure: Measurement

Kiran, Mike (Informatics, UoE) Partitioning data-parallel programs for heterogeneous MPSOCs : Time and energy design space explorationJune 12, 2014 15 / 28

Energy Measurement - 2

(a) pandaboard (b) oscilloscope

Figure: Board and Oscilloscope

Kiran, Mike (Informatics, UoE) Partitioning data-parallel programs for heterogeneous MPSOCs : Time and energy design space explorationJune 12, 2014 14 / 28

Measuring energy

11

Matrix Multiplication : Results Individual - 1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000

se
c

dsp
m3
a9

(a) Runtime

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

m
ill

iJ
o

u
le

s

a9
dsp
m3

(b) Energy wo.static

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600 800 1000

m
ill

iJ
o

u
le

 s
ec

dsp
a9

m3

(c) EDP wo.static

Figure: Unoptimized Matrix Multiplication Benchmark : Here the A9 is clearly
the fastest processor followed surprisingly by the the M3 and then the DSP. For
energy without idle power, the relative performance changes. The M3 is the best
processor followed by the DSP and then the A9. In terms of EDP, the M3 is the
best processor followed by the A9 and DSP.

Kiran, Mike (Informatics, UoE) Partitioning data-parallel programs for heterogeneous MPSOCs : Time and energy design space explorationJune 12, 2014 17 / 28

Unoptimised Runtime : A9>M3>DSP
Energy: M3>DSP>A9

MxM on a single core, no idle

ED: M3>>A9>DSP

Conclusion Use A9 or M3, turn off DSP

12

Matrix Multiplication : Results Individual - 2

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

se
c

m3
a9

dsp

(a) Runtime Opti

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

m
ill

iJ
o

u
le

s

a9
dsp
m3

(b) Energy wo.static

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000

m
ill

iJ
o

u
le

 s
ec

a9
m3

dsp

(c) EDP wo.static

Figure: Optimized Matrix Multiplication Benchmark : DSP is the fastest followed
by the A9 and M3. For energy (without idle) the DSP and M3 are very similar
while the A9 is ine�cient. Overall for EDP, DSP is the now the best processor
rather than the worst followed by M3 and A9

Kiran, Mike (Informatics, UoE) Partitioning data-parallel programs for heterogeneous MPSOCs : Time and energy design space explorationJune 12, 2014 18 / 28

31

Optimised Runtime : DSP>A9>M3

Energy : DSP/M3>A9

MxM: optimized, no idle power

ED : DSP>M3>>A9

Conclusion DO NOT Use A9 use DSP

13

Matrix Multiplication : Results Individual - 3

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

se
c

Partition size

m3
a9

dsp

(a) Runtime Opti

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000

m
ill

iJ
o

u
le

s

Partition size

a9
m3

dsp

(b) Energy w.static

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 200 400 600 800 1000

m
ill

iJ
o

u
le

s
se

c

Partition size

a9
m3

dsp

(c) EDP .static

Figure: Optimized Matrix Multiplication Benchmark : The DSP has the least
energy followed by the M3 and A9. Runtime is una�ected by how we calculate
energy, so overall for EDP, the DSP is the best processor followed by the M3 and
DSP.

Kiran, Mike (Informatics, UoE) Partitioning data-parallel programs for heterogeneous MPSOCs : Time and energy design space explorationJune 12, 2014 19 / 28

MxM: including idle power

Optimised Runtime : DSP>A9>M3

Energy : DSP >M3>A9
ED : DSP>>M3/A9

Conclusion DO NOT Use M3/A9 use DSP

14

Partitioning Analysis

 0

 20

 40

 60

 80

 100

m
atm

dotp

edge

hist
dgen

regd

flw
l

%
 o

f
to

ta
l

Partitioning

(a) time

 0

 20

 40

 60

 80

 100

m
atm

dotp

edge

hist
dgen

regd

flw
l

%
 o

f
to

ta
l

Partitioning

(b) with idle

 0

 20

 40

 60

 80

 100

m
atm

dotp
edge

hist
dgen

regd
flw

l

%
 o

f
to

ta
l

Partitioning

A9
M3
DSP

(c) wo idle

Figure: Partitioning overview of all benchmarks for runtime, energy with and
without idle. Partitioning is di�erent for each benchmark. A9 gets the major
share for runtime in all benchmarks except matm. But for energy without idle, A9
gets no share at all due to its high dynamic energy. The partitioning is similar for
metrics runtime and energy with idle.

Kiran, Mike (Informatics, UoE) Partitioning data-parallel programs for heterogeneous MPSOCs : Time and energy design space explorationJune 12, 2014 26 / 28

Best Partition across programs

Best partition/cores varies with programs/optimization

Removal of idle by gating has big impact

15

Power Budget

 0

 5

 10

 15

 20

low med high 0 4 8 12

R
u

n
ti

m
e
(s

e
c
)

Power(W)

Big CPU

Little CPU

All CPU

Big GPU

Little GPU

Combined

(a) Exynos

 0

 10

 20

 30

 40

 50

low med high 0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
u

n
ti

m
e
(s

e
c
)

Power(W)

A9-1000

A9-800

A9-600

A9-300

CPU

DSP

M3

Combined

(b) OMAP4

Figure : Power/Performance pareto : Using all the processors gives better pareto
points than using the CPU only with DVFS.

Kiran Chandramohan (Informatics, UoE) Third Year Review September 24, 2015 26 / 36

16

Multicores can save power. Minimising energy/power hard

End of detour

Code Size

• Memory costs. Reducing code size in ROM can be significant. CISC helps

• Reduction to 65-70 % of original code size
• 130% of ARM performance with 8/16 bit memory
• 85% of ARM performance with 32-bit memory

1110 001 01001 0 Rd 0 Rd 0000 Constant

16-bit Thumb instr. 
ADD Rd #constant001 10 Rd Constant

zero extended
major 
opcode minor 

opcode
source= 
destination

Dynamically
decoded at
run-time

Specialised Processors

• Filtering in digital signal processing. Signal at t(s) depends weighted avg of
k previous inputs

-- outer loop over
-- sampling times ts
{ MR:=0; A1:=1; A2:=s-1; 
 MX:=w[s]; MY:=a[0];  
 for (k=0; k <= (n−1); k++) 
 { MR:=MR + MX * MY; 
 MX:=w[A2]; MY:=a[A1];
 A1++; A2--; 
 }
 x[s]:=MR; 
 }

Maps nicely but specialised

ADSP 2100

DSPs

• Specialised processors found in many embedded settings

• Have a number of special features

• Specialised addressing modes

• Separate addressing Unit

• Saturating Arithmetic

• Fixed Point Arithmetic

• Real-time capabilities

• Zero-overhead loops

• Multiple memory banks

• Heterogeneous register files

• Multiply/accumulate instructions

Address generating Units

! Data memory can only be
fetched with address contained
in A,

! but this can be done in parallel
with operation in main data path
(takes effectively 0 time).

! A := A ± 1 also takes 0 time,
! same for A := A ± M;
! A := <immediate instruction>

requires extra instruction
 Minimize load immediates

Specialised Arithmetic

! Returns largest/smallest number in case of over/
underflows

! Example: 
a 0111 
b + 1001 
standard wrap around arithmetic (1)0000  
saturating arithmetic 1111 
(a+b)/2: correct 1000  
 wrap around arithmetic 0000 
 saturating arithmetic + shifted 0111

! Appropriate for DSP/multimedia applications:
• No timeliness of results if interrupts are generated for overflows
• Precise values less important
• Wrap around arithmetic would be worse.

“almost correct“

Multimedia Instructions
! Multimedia instructions exploit many registers, adders etc are quite wide (32/64

bit), whereas most multimedia data types are narrow
• 2-8 values can be stored per register and added. E.g.:

2 additions per instruction;
no carry at bit 16

a1 a2
32 bits

c1 c2
32 bits

+

! Cheap way of using parallelism
• SSE instruction set extensions, SIMD instructions

b1 b2
32 bits

VLIW
! Instructions included in long instruction packets.

! Instruction packets are assumed to be executed in parallel.

! Fixed association of packet bits with functional units.

! Compiler is assumed to generate these “parallel” packets

! Complexity of finding parallelism is moved from the hardware (RISC/CISC processors) to
the compiler;

! Ideally, this avoids the overhead (silicon, energy, ..) of identifying parallelism at run-time.

A lot of expectations into VLIW machines

! However, possibly low code efficiency, due to many NOPs

Explicitly parallel instruction set computers (EPICs) are an extension of VLIW
architectures: parallelism detected by compiler, but no need to encode parallelism in 1
word.

MPSoCs

Source: http://www.ti.com/ww/en/omap/omap5/omap5-OMAP5430.html 24

Reconfigurable

• Custom HW may be too expensive, SW too slow.

Combine the speed of HW with the flexibility of SW
• HW with programmable functions and interconnect.
• Use of configurable hardware; 

common form: field programmable gate arrays (FPGAs)
Applications:
! algorithms like de/encryption,
! pattern matching in bioinformatics,
! high speed event filtering (high energy physics),
! high speed special purpose hardware.

Very popular devices from
! XILINX, Actel, Altera and others

Reconfigurable Floor plan

Memories typically
used as look-up
tables to implement
any Boolean
function of ≤ 6
variables.

Processors typically
implemented as
“soft
cores” (microblaze)

Summary

• Power and Energy

• Processors

• Energy Efficiency

• Heterogeneous multicores

• Code Size

• DSPs

• Address generating Units

• Specialised Arithmetic

• Multimedia Instructions

• VLIW

• Reconfigurable

