Lecture 6: Hardware

Michael O'Boyle Embedded Software

Overview

- Power and Energy
 - Processors
 - Energy Efficiency
 - Code Size
 - DSPs
 - Address generating Units
 - Specialised Arithmetic
 - Multimedia Instructions
 - VLIW
 - Reconfigurable

Power and Energy

- Energy and Power are first class issue in embedded and systems design
 - Battery life
 - Energy density, thermal
 - Environment no more data centres in London
- Energy not always the same
 - A processor that is more power-hungry but takes less time may use less energy $\Gamma \quad C \quad C \quad A \neq A \neq A = 0$

Processors

- Vast majority of embedded systems based on (semi-)programmable processors rather than specialised hardware (ASICs)
 - Ease of programming, upgrade or change of use
- Variety of ways to manage power

Example: STRONGARM SA1100

RUN: operational IDLE: a SW routine may stop the CPU when not in use, while monitoring interrupts SLEEP: Shutdown of onchip activity

Dynamic Voltage Scaling

Power consumption of CMOS circuits (ignoring leakage):

 $P = \alpha C_L V_{dd}^2 f \text{ with}$ $\alpha : \text{ switching activity}$ $C_L : \text{load capacitance}$ $V_{dd} : \text{ supply voltage}$ f : clock frequency Delay for CMOS

 $(V_t < \text{than } V_{dd})$

$$\tau = k C_L \frac{V_{dd}}{(V_{dd} - V_t)^2} \text{ with}$$
$$V_t : \text{threshhold voltage}$$

- Decreasing voltage slows down linearly, quadratic power saving
- Intel SpeedStep has 6 speed/voltage settings
- ARM has big.LITTLE offering c 18 power levels!

Multi-core: Reduce Power for same performance?

Basic equations

Power: Maximum clock frequency: Energy to run a program: Time to run a program:

$$P \sim V_{DD}^{2},$$

$$f \sim V_{DD},$$

$$E = P \times t, \text{ with: } t = \text{runtime (fixed)}$$

$$t \sim 1/f$$

Rough approximations

Changes due to parallel processing, with β operations per clock:

Clock frequency reduced to: Voltage can be reduced to: Power for parallel processing: Power for β operations per clock: Time to run a program is still: Energy required to run program:

$$f' = f \mid \beta,$$

$$V_{DD}' = V_{DD} \mid \beta,$$

$$P^{\circ} = P \mid \beta^{2} \text{ per operation,}$$

$$P' = \beta \times P^{\circ} = P \mid \beta,$$

$$t' = t,$$

$$E' = P' \times t = E \mid \beta$$

Argument in favour of voltage scaling and parallel processing

Detour in to real power experiments on heterogeneous multicores

Heterogeneous system

Want to partition programs to minimize time and energy

Challenging hardware, best partition depends on criteria

Measuring energy

MxM on a single core, no idle

MxM: optimized, no idle power

Optimised Runtime : DSP>A9>M3 Energy : DSP/M3>A9 ED : DSP>M3>>A9

Conclusion DO NOT Use A9 use DSP

MxM: including idle power

Optimised Runtime : DSP>A9>M3 Energy : DSP >M3>A9 ED : DSP>>M3/A9 Conclusion DO NOT Use M3/A9 use DSP

Best Partition across programs

Best partition/cores varies with programs/optimization Removal of idle by gating has big impact

VIND

Figure : Power/Performance pareto : Using all the processors gives better pareto points than using the CPU only with *DVFS*.

Multicores can save power. Minimising energy/power hard

End of detour

Code Size

• Memory costs. Reducing code size in ROM can be significant. CISC helps

Specialised Processors

 Filtering in digital signal processing. Signal at t(s) depends weighted avg of k previous inputs

ADSP 2100

$$x_s = \sum_{k=0}^{n-1} w_{s-k} * a_k$$

Maps nicely but specialised

DSPs

- Specialised processors found in many embedded settings
- Have a number of special features
 - Specialised addressing modes
 - Separate addressing Unit
 - Saturating Arithmetic
 - Fixed Point Arithmetic
 - Real-time capabilities
 - Zero-overhead loops
 - Multiple memory banks
 - Heterogeneous register files
 - Multiply/accumulate instructions

Address generating Units

- Data memory can only be fetched with address contained in A,
- but this can be done in parallel with operation in main data path (takes effectively 0 time).
- A := A ± 1 also takes 0 time,
- same for A := A ± M;
- A := <immediate instruction> requires extra instruction

Minimize load immediates

Specialised Arithmetic

 Returns largest/smallest number in case of over/ underflows

• Example:

a		0111
b	+	1001
standard wrap around arithmetic		(1)0000
saturating arithmetic		1111
(a+b)/2:	correct	1000
,	wrap around arithmetic	0000
:	saturating arithmetic + shifted	0111
Appropriate for DSP/multimedia applications: "almost correct"		
No time allocate of use with if intermunter and use newstard for a worfflows		

- No timeliness of results if interrupts are generated for overflows
- Precise values less important
- Wrap around arithmetic would be worse.

Multimedia Instructions

- Multimedia instructions exploit many registers, adders etc are quite wide (32/64 bit), whereas most multimedia data types are narrow
- 2-8 values can be stored per register and added. E.g.:

- Cheap way of using parallelism
- SSE instruction set extensions, SIMD instructions

VLIW

- Instructions included in long instruction packets.
- Instruction packets are assumed to be executed in parallel.
- Fixed association of packet bits with functional units.
- Compiler is assumed to generate these "parallel" packets
- Complexity of finding parallelism is moved from the hardware (RISC/CISC processors) to the compiler;
- Ideally, this avoids the overhead (silicon, energy, ..) of identifying parallelism at run-time.

A lot of expectations into VLIW machines

However, possibly low code efficiency, due to many NOPs

Explicitly parallel instruction set computers (EPICs) are an extension of VLIW architectures: parallelism detected by compiler, but no need to encode parallelism in 1 word.

Reconfigurable

Custom HW may be too expensive, SW too slow.

Combine the speed of HW with the flexibility of SW

- HW with programmable functions and interconnect.
- Use of configurable hardware; common form: field programmable gate arrays (FPGAs)

Applications:

- algorithms like de/encryption,
- pattern matching in bioinformatics,
- high speed event filtering (high energy physics),
- high speed special purpose hardware.

Very popular devices from

XILINX, Actel, Altera and others

Reconfigurable Floor plan

Memories typically used as look-up tables to implement any Boolean function of ≤ 6 variables.

Processors typically implemented as "soft cores" (microblaze)

Summary

- Power and Energy
 - Processors
 - Energy Efficiency
 - Heterogeneous multicores
 - Code Size
 - DSPs
 - Address generating Units
 - Specialised Arithmetic
 - Multimedia Instructions
 - VLIW
 - Reconfigurable