\\\ l—/(l
y @) THE UNIVERSITY of EDINBURGH

Y N
= T e =l
- -
o iy
L > ~
OINBY

—mbedded Systems
_ecture 5: Imperative Programming Languages

Michael O’Boyle
University of Edinburgh

Wednesday, 29 Januar y 2014

Overview

e Desirable features in a programming language

- = " . —
- - ——— -
.:. vy v - Y ~ y PO s >
g 20 n sl Ay e -
ar vodu - WAIPR, e - - - 'Lv" K
— e & G S SAD D . - mpee A1)y ey Paideatny
Sriin 2006 658 D e - O e et SPARK. 5 e
- S attnt SN AR O P S i i ey —
. B NES s Banta . S L ithe Soan - BAR MO Wemene
e Pt Vo Y nave B S e & LLoLLE L Yot Soe Terwg
Pl '.‘ e . Vol 1y Wndegy iy B Ay O S e
S Aty STV o, P S | o
St B - " Sy Ay c——— N e R
e - —
St Wrvh L outed 2 - - - o—-—’\:‘ . Ve wwald
. S — b bt ol | g .) e
—— o
. -
= Programmmg Language ~
. . -
o A ™ ot - s — e d e :
iy s .'o---v- -~
] [}] iy rafar -._.-:,. e iy e _‘o-n«’:'...—-—-v
M RS Sl e | .4,_, ."'..-\ Ll e K0 il -_— Ty L
. - St el e - .QC.“.-’ et om—d v v
[S— - -
ST o ::.':........:.::r' - —
—ap o -l " - P w—ta WA
e T L~u,'~4.. ‘A..': -t "
Sl masapase I " ! Sdve) —
2 - W e diiie e e L aboBho 1 hon .
~ S I, e, . d— " -
— L W = Rnarfelar .. eear s o A ——
- AT At e v -—— -
" — -
e d ——e - L s
Sed Pragw - e

e Tasks and Message passing procedural

/’ e.9. FORTRAN, C

/ N object oriented

e.0.Cr+ Java

e Threads and shared memory

e Determinancy PO

\ / e.g!%or.glog

e Summary declarative

\ functional

e.9. Haskell, Efang

Wednesday, 29 January 2014

Translating design into software

e Embedded systems are processor based

e Execute machine code instructions compiler from high level programming
languages

e Design has to embodied in a language as in all software development

e Embedded and real time constraints add complexity to any programming
language

e Most popular are imperative languages with special provision for time and
concurrency

Wednesday, 29 January 2014

Models of computation

Communication/
local computations

Shared
memory

Message passing
Synchronous | Asynchronous

Undefined
components

Plain text, use cases

(Message) sequence charts

Communicating finite
state machines

StateCharts

SDL

Data flow

Scoreboarding,
Dataflow architectures

Kahn networks

Petri nets

C/E nets, P/T nets, ...

Discrete event (DE)
model

VHDL*, Verilog*,
SystemC*, ...

Only experimental systems, e.g.
distributed DE in Ptolemy

Imperative (Von
Neumann) model

C, C++, Java

C, C++, Java with libraries
CSP, ADA |

Wednesday, 29 January 2014

Common languages and features

SECOND EDITION
IHE

e Focus on just three languages C, Java and Ada. c/
¥y G
e C - currently the most popular language used PREE&@NA%ENG

e | acks support for embedded software development

e Makes direct use of very low level posix threads. Little support for
abstraction and exceptions

¢ Java - de facto standard for programming desktop applications

e Explicit support for modules concurrency and exceptions
e Problems for embedded s/w - unpredictability and lack of direct control
e Real Time Java tries to overcome this

e Ada - used in safety-critical applications
e Programming in the large and code reuse

e Tasking Features for concurrency. High level exceptions. Real time
facilities

Wednesday, 29 January 2014

Desirable features

Time access and control:
® Mechanisms/primitives for dealing with absolute & relative time to control & monitor program timing

behaviour Bedini Motor Timmg Control»
® Basic operations: set a clock or timer, read value of timer object
® Higher-level - instructions to delay a task, generate timeout signals

Exception Handling:
® Unusual behaviours in both h/w & s/w should be detected & handled gracefully

® Should also be easy to distinguish between unusual & normal ones
® Useful language structures: define, test and recover from exceptions

Software Management:
® Embedded software is complex - large amount of code, a variety of activities & requirements

® | anguage features must provide help with key to managing complexity of large embedded systems l.e.
decomposition & abstraction =

Parallelism and determinancy
® Embedded system/real world is inherently parallel. Deadlock and race conditions a real problem

® |s program behaviour predictable and repeatable? A problem for parallel systems

Wednesday, 29 January 2014

Comparison by certain features gy

* Time access and control =
e Ada comprehensive set of timing packages. Calendar and Real- t|me
Delay function
e Java elaborate Date class. Coarse clock granularity - but Real Time Java
has access to a nanosecond clock
e C standard libraries for interfacing to calendar time. Posix thread library or
pthreads has a nano second clock
e Exceptions
e Ada has clean scheme for declaring, raising and handling
e Java extends this and integrates in OO model. C has none
e Abstraction
e Ada and Java support modules in form of packages
e C does not really apart from separate compilation of flles
® Real issues: parallelism and determinancy T

Wednesday, 29 January 2014

Parallelism and Communication

e Concurrency control: inherent feature of embedded systems

e Software constructs for defining, synchronising, communication among
parallel activities & scheduling their execution

e |n addition, to above higher level facilities, need mechanisms for finer
degree of h/w control and timing
e c.g. declarations or statements that directly deal with interrupts, IO, etc.

e Java provides threads and shared memory plus synchronisation

e C has to incorporate real-time POSIX primitives (fork, wait, spawn, etc.) for
concurrency.

e Can have either shared memory or use message-passing via MPI

e Ada provides tasks and uses a message-passing approach

A L B, B W 7,
T S T T =T
core'lcoré’| core’} | core |'core | core

Wednesday, 29 January 2014

Parallel Java threads

* Threads are the active objects of concurrency

e Threads are derived from the Java Threads class

Mam Thread Thream

thread

11

AlJava Process

e A Thread can be specified by subclassing the Thread class with the

extends keyword & specifying a run method for it

e The run method contains the thread's executable code

e A thread is activated by calling the start method, which

method

Invokes its run

e .. Producer.start (); makes Producer ready for execution

Wednesday, 29 January 2014

Parallel Java threads

e To avoid all threads having to be child classes of Thread, Java also provides

a standard interface called Runnable

public

e Any class which wishes to express concurrency must implement this interface

interface Runnable{

public abstract void run():;

}

& provide the run method.

|n Th ad Thre d

W

\ AJava Process

e The join method is available from the Thread class for managing threads

e e.9. the thread Process Data, which needs to wait for thread

Get Data to terminate before it can continue, must call:

Get Data.join();

Wednesday, 29 January 2014

Semaphore (up position)

| Train can pass if semaphore is UP |

e

Parallelism in C using Pthread library —=...

Never allow more than one train on
this part of the track !!!

#include <stdio.h> What happens if {1 and {2 try to

ncl h .h i '
#include <pthread.h> write to the same variable y?
main() {

pthread t f2 thread, fl thread;
void *£f2(), *£fl();
int il,i2;
il = 1;
i2 = 2;
pthread create(&fl thread,NULL,fl,&il);
pthread create(&f2 thread,NULL,f2,&12);
pthread join(fl thread,NULL);
pthread join(f2 thread,NULL);
}
void *fl(int *x){
int 1 = *x;
sleep(l);
printf("£f1l: %d4",1);

main () {
int y;

pthread create(...fl,&y);
pthread create(...f2,&y);
pthread join(...);
pthread join(...);
printf("fl: %d",y);

}

void *fl(int *x,*y){
*Yz]_;
pthread exit(0);

_ }
pthread exit(0); void *f2(int *x,*y){
} *Y=2;
. * . *
vo%d fZ(lnt x)Aq pthread exit(0);
int 1 = *Xx; } B

sleep(l);
printf("£f2: %d4",1);

| pthread_exit(0); Race condition!!

Wednesday, 29 January 2014

Parallel tasks in Ada

procedure example1 is task body b is
task a; - - local declarations for b
task b; begin
task body a is - - statements for b
end b;

- - local declarations for a
) begin
begin .
- - Tasks a and b will start before the first

- - m
statements for a - - statement of the body of example1

end a; end:

Wednesday, 29 January 2014

Communication: Shared memory and
synchronisation: Java and synchronized methods

public class SynchronizedCounter({
private int c=0;
public synchronized void incr () {
c++;
}

public synchronized voild decr () {

c==;
}
}
new Thread(...t.incr()...).start();
new Thread(...t.decr()...).start();

Synchronized methods prevent race condition. However if synchronized
method requires interaction from another thread, it may lead to deadlock

Wednesday, 29 January 2014

Communication: Shared memory and [/ 11
synchronisation: G and pthreads

|3 N 3 2 R 7 I

main () A main () {
int y=1; int y=1;
pthread create(...fl,&y); pthread create(...fl,&y);
pthread create(...£f2,&y); pthread join(...);
pthread join(...); pthread create(...£2,&y);
pthread join(...); pthread join(...);
printf("fl: %d",y); printf("fl: %4d",y);
} }
void *fl(int *x,*y){ void *fl(int *x,*y){
*y=1; *y=1;
pthread exit(0); pthread exit(0);
} }
void *f2(int *x,*y){ void *f2(int *x,*y){
*y=2; *Y=2;
pthread exit(0); pthread exit(0);
} }

Can use join as a way of ordering. Mutual exclusion allows more efficient but complex and error
prone codes pthread mutex lock(), pthread mutex unlock()

Wednesday, 29 January 2014

Communication: Message- Passing

e One of the two approaches to communication

e Assumes no shared state between tasks/processes. One task cannot refer to
or access variables in another task - they are not in scope

* Instead send and receive messages via a channel or pipe

e Key issue is whether synchronous or asynchronous. Can lead to deadlock

e CSP: communicating synchronous processes [1985] is the originator
followed by occam.

(processor A) Cproccssor B)

memory memaory

e MPI widely used in HPC. Ada uses it too

send (data) receive (data)

Wednesday, 29 January 2014

Synchronous message passing: CSP

Communicate by shared channels c and d

process A process B
var a ... varb ...
a.=3;
cla; -- output c?b; -- input
end end

No race conditions (!) But can deadlock

process A process B
var a ... varb ...
cla; -- output dlb; -- output
d?a; --input c?b; -- input

end end

Wednesday, 29 January 2014

Synchronous message passing:
Ada-rendez-vous

task screen outis

entry call _ch(val:character; x, y: integer);
entry call_int(z, x, y: integer);

end screen_out;

task body screen outis

select - .

accept call ch ... do .. gzgsr:ng a fmessage.

end call_ch; screen_out.call_ch('Z',10,20);
or | exception

accept cgll_lnt ... do .. when tasking_error =>

end call_int; (exception handling)
end select end:

Wednesday, 29 January 2014

Predictabllity

Programs must be both functionally predictable and timing predictable
® Timing predictability implies well-defined timing characteristics for constructs, which are statically

derivable
® [anguages overloaded with facilities & special cases usually too complex to satisfy predictability

requirements

Ada 95 standard has been specifically proposed with predictability of tasking & timing features in mind
® Features such as recursion & dynamic data structures lead to unpredictable timing

® c.g. dynamic storage management & garbage collection

Java is highly unpredictable
® Garbage collection and dynamic compilation makes perfromance prediction extremely difficult

® Real time Java proposed as a way to overcome this

C potentially unpredictable
® Unrestricted use of dynamic memory allocation the main problem

P\REDICTABILITY

After five hddfp and countless un-masked
mddl gdmnw tIId thlyf d fmnters'

Wednesday, 29 January 2014

Prob

Mer

ms with imperative languages and shared

Y

Mutex A

Potential deadlocks

Specification of total order of operations is an over- specification. A partial
order would be sufficient.

The total order reduces the potential for optimizations
Timing cannot be specified

Access to shared memory leads to anomalies, that have to be pruned away

Mutex B

by mutexes, semaphores, monitors. Messages can be as bad

Access to shared, protected resources leads to priority inversion

Termination in general undecidable

Preemptions at any time complicate timing analysis

Wednesday, 29 January 2014

Summary

e Desirable features in a programming language

e Comparison by language

e Parallelism and Communciation

® Message passing

e Threads

e Determinancy

e Next lecture on embedded hardware

Programming Language Paradigms

(Not comprehensive)
(Not to scale)

oo

Imperative

Pascal

Procedural

ash

Object-Oriented

Eiffel

e “’"”’ER41“‘ R

ﬂ I sl acoumulator = 1
5% 'l'"m L =1 ascusulator = 1 * 1
MOCUS » AcCEmulAatgred
ond Le2 apcusulat «1*2
TOLUITE ATCUR L =) uoc\'mluoz -]
. | L =4 accumulator - 4 ¢ 4
\lal“a e return 24
Rrcton dedaton

functice @Mc.rlONAL T

12 n == ’ h 4 ¢ factR{1) =
return 1
AT 1 ¢ factR(3) |
retusn mptfactRin-3) tlol‘ﬂ.)
end | l"~‘
oo ’ “w e
| B
1 !
No\/anahl*'- i

Just Param..
use rc,cua.s'oU4)ocPS

Wednesday, 29 January 2014

