
Embedded Systems
Lecture 5: Imperative Programming Languages

Michael O’Boyle
University of Edinburgh

Wednesday, 29 January 2014

Overview

• Desirable features in a programming language

• Comparison by language

• Parallelism and Communciation

• Tasks and Message passing

• Threads and shared memory

• Determinancy

• Summary

Wednesday, 29 January 2014

Translating design into software

• Embedded systems are processor based

• Execute machine code instructions compiler from high level programming
languages

• Design has to embodied in a language as in all software development

• Embedded and real time constraints add complexity to any programming
language

• Most popular are imperative languages with special provision for time and
concurrency

Wednesday, 29 January 2014

 - -

Models of computation

Communication/
local computations

Shared
memory

Message passing
Synchronous | Asynchronous

Message passing
Synchronous | Asynchronous

Undefined
components

 Plain text, use cases
 | (Message) sequence charts
 Plain text, use cases
 | (Message) sequence charts
 Plain text, use cases
 | (Message) sequence charts

Communicating finite
state machines

StateCharts SDL

Data flow Scoreboarding,
Dataflow architectures

Kahn networks

Petri nets C/E nets, P/T nets, … C/E nets, P/T nets, …

Discrete event (DE)
model

VHDL*, Verilog*,
SystemC*, …

Only experimental systems, e.g.
distributed DE in Ptolemy

Only experimental systems, e.g.
distributed DE in Ptolemy

Imperative (Von
Neumann) model

C, C++, Java C, C++, Java with libraries
CSP, ADA |

C, C++, Java with libraries
CSP, ADA |

Wednesday, 29 January 2014

Common languages and features

• Focus on just three languages C, Java and Ada.

• C - currently the most popular language used

• Lacks support for embedded software development

• Makes direct use of very low level posix threads. Little support for
abstraction and exceptions

• Java - de facto standard for programming desktop applications

• Explicit support for modules concurrency and exceptions

• Problems for embedded s/w - unpredictability and lack of direct control

• Real Time Java tries to overcome this

• Ada - used in safety-critical applications

• Programming in the large and code reuse

• Tasking Features for concurrency. High level exceptions. Real time
facilities

Wednesday, 29 January 2014

Desirable features

Time access and control:
• Mechanisms/primitives for dealing with absolute & relative time to control & monitor program timing

behaviour
• Basic operations: set a clock or timer, read value of timer object
• Higher-level - instructions to delay a task, generate timeout signals

Exception Handling:
• Unusual behaviours in both h/w & s/w should be detected & handled gracefully
• Should also be easy to distinguish between unusual & normal ones
• Useful language structures: define, test and recover from exceptions

Software Management:
• Embedded software is complex - large amount of code, a variety of activities & requirements
• Language features must provide help with key to managing complexity of large embedded systems i.e.
decomposition & abstraction

Parallelism and determinancy
• Embedded system/real world is inherently parallel. Deadlock and race conditions a real problem
• Is program behaviour predictable and repeatable? A problem for parallel systems

Wednesday, 29 January 2014

Comparison by certain features

• Time access and control
• Ada comprehensive set of timing packages. Calendar and Real-time.

Delay function
• Java elaborate Date class. Coarse clock granularity - but Real Time Java

has access to a nanosecond clock
• C standard libraries for interfacing to calendar time. Posix thread library or

pthreads has a nano second clock
• Exceptions

• Ada has clean scheme for declaring, raising and handling
• Java extends this and integrates in OO model. C has none

• Abstraction
• Ada and Java support modules in form of packages
• C does not really apart from separate compilation of files

• Real issues: parallelism and determinancy

Wednesday, 29 January 2014

Parallelism and Communication

• Concurrency control: inherent feature of embedded systems

• Software constructs for defining, synchronising, communication among
parallel activities & scheduling their execution

• In addition, to above higher level facilities, need mechanisms for finer
degree of h/w control and timing
• e.g. declarations or statements that directly deal with interrupts, IO, etc.

• Java provides threads and shared memory plus synchronisation

• C has to incorporate real-time POSIX primitives (fork, wait, spawn, etc.) for
concurrency.

• Can have either shared memory or use message-passing via MPI

• Ada provides tasks and uses a message-passing approach

Wednesday, 29 January 2014

Parallel Java threads

• Threads are the active objects of concurrency

• Threads are derived from the Java Threads class

• A Thread can be specified by subclassing the Thread class with the
extends keyword & specifying a run method for it

• The run method contains the thread's executable code

• A thread is activated by calling the start method, which invokes its run
method

• e.g. Producer.start(); makes Producer ready for execution

Wednesday, 29 January 2014

Parallel Java threads

• To avoid all threads having to be child classes of Thread, Java also provides
a standard interface called Runnable

• Any class which wishes to express concurrency must implement this interface
& provide the run method.

• The join method is available from the Thread class for managing threads

• e.g. the thread Process_Data, which needs to wait for thread
Get_Data to terminate before it can continue, must call:
Get_Data.join();

public interface Runnable{
 public abstract void run();
 }

Wednesday, 29 January 2014

Parallelism in C using Pthread library

#include <stdio.h>
#include <pthread.h>
main() {
 pthread_t f2_thread, f1_thread;
 void *f2(), *f1();
 int i1,i2;
 i1 = 1;
 i2 = 2;
 pthread_create(&f1_thread,NULL,f1,&i1);
 pthread_create(&f2_thread,NULL,f2,&i2);
 pthread_join(f1_thread,NULL);
 pthread_join(f2_thread,NULL);
}
void *f1(int *x){
 int i = *x;
 sleep(1);
 printf("f1: %d",i);
 pthread_exit(0);
}
void *f2(int *x){
 int i = *x;
 sleep(1);
 printf("f2: %d",i);
 pthread_exit(0);
}

What happens if f1 and f2 try to
write to the same variable y?

main () {
int y;
...
pthread_create(...f1,&y);
pthread_create(...f2,&y);
pthread_join(...);
pthread_join(...);
printf("f1: %d",y);
}

void *f1(int *x,*y){
 *y=1;
 pthread_exit(0);
}
void *f2(int *x,*y){
 *y=2;
 pthread_exit(0);
}

Race condition!!
Wednesday, 29 January 2014

Parallel tasks in Ada

Wednesday, 29 January 2014

Communication: Shared memory and
synchronisation: Java and synchronized methods

public class SynchronizedCounter{
 private int c=0;
 public synchronized void incr(){
 c++;
 }
 public synchronized void decr(){
 c--;
 }
 }

 new Thread(...t.incr()...).start();
 new Thread(...t.decr()...).start();

Synchronized methods prevent race condition. However if synchronized
method requires interaction from another thread, it may lead to deadlock

Wednesday, 29 January 2014

Communication: Shared memory and
synchronisation: C and pthreads

main () {
int y=1;
...
pthread_create(...f1,&y);

 pthread_create(...f2,&y);
 pthread_join(...);
 pthread_join(...);
 printf("f1: %d",y);
 }

 void *f1(int *x,*y){
 *y=1;
 pthread_exit(0);
 }
 void *f2(int *x,*y){
 *y=2;
 pthread_exit(0);
 }

 main () {
int y=1;
...
pthread_create(...f1,&y);

 pthread_join(...);
 pthread_create(...f2,&y);
 pthread_join(...);
 printf("f1: %d",y);
 }

 void *f1(int *x,*y){
 *y=1;
 pthread_exit(0);
 }
 void *f2(int *x,*y){
 *y=2;
 pthread_exit(0);
 }

Can use join as a way of ordering. Mutual exclusion allows more efficient but complex and error
prone codes pthread_mutex_lock(), pthread_mutex_unlock()

Wednesday, 29 January 2014

Communication: Message- Passing

• One of the two approaches to communication

• Assumes no shared state between tasks/processes. One task cannot refer to
or access variables in another task - they are not in scope

• Instead send and receive messages via a channel or pipe

• Key issue is whether synchronous or asynchronous. Can lead to deadlock

• CSP: communicating synchronous processes [1985] is the originator
followed by occam.

• MPI widely used in HPC. Ada uses it too

Wednesday, 29 January 2014

 - -

Synchronous message passing: CSP

§Communicate by shared channels c and d
process A
..
var a ...
 a:=3;
 c!a; -- output
end

process B
..
var b ...
 ...
 c?b; -- input
end

No race conditions (!) But can deadlock

process A
var a ...
 c!a; -- output
 d?a; --input
end

process B
var b ...
 d!b; -- output
 c?b; -- input
end

Wednesday, 29 January 2014

 - -

Synchronous message passing:
Ada-rendez-vous

task screen_out is
 entry call_ch(val:character; x, y: integer);
 entry call_int(z, x, y: integer);
end screen_out;
task body screen_out is
...
 select
 accept call_ch ... do ..
 end call_ch;
 or
 accept call_int ... do ..
 end call_int;
 end select

Sending a message:
begin
 screen_out.call_ch('Z',10,20);
 exception
 when tasking_error =>
 (exception handling)
end;

Wednesday, 29 January 2014

Predictability

Programs must be both functionally predictable and timing predictable
• Timing predictability implies well-defined timing characteristics for constructs, which are statically
derivable
• Languages overloaded with facilities & special cases usually too complex to satisfy predictability
requirements

Ada 95 standard has been specifically proposed with predictability of tasking & timing features in mind
• Features such as recursion & dynamic data structures lead to unpredictable timing
• e.g. dynamic storage management & garbage collection

Java is highly unpredictable
• Garbage collection and dynamic compilation makes perfromance prediction extremely difficult
• Real time Java proposed as a way to overcome this

C potentially unpredictable

•Unrestricted use of dynamic memory allocation the main problem

Wednesday, 29 January 2014

Problems with imperative languages and shared
memory

§ Potential deadlocks

§ Specification of total order of operations is an over- specification. A partial
order would be sufficient.

§ The total order reduces the potential for optimizations

§ Timing cannot be specified

§ Access to shared memory leads to anomalies, that have to be pruned away
by mutexes, semaphores, monitors. Messages can be as bad

§ Access to shared, protected resources leads to priority inversion

§ Termination in general undecidable

§ Preemptions at any time complicate timing analysis

Wednesday, 29 January 2014

Summary

• Desirable features in a programming language

• Comparison by language

• Parallelism and Communciation

• Message passing

• Threads

• Determinancy

• Next lecture on embedded hardware

Wednesday, 29 January 2014

