
Embedded Systems
Lecture 3: Models of Computation

Björn Franke

University of Edinburgh

Overview

• Introduction

• Dataflow Diagrams, Decision Tables,

• Finite State Machines (FSM)

• Synchronous/Asynchronous FSM

• Extensions to FSM for Embedded Specification

• Kahn Process Networks

Motivation

• Why considering specification and models in detail?

• If something is wrong with the specification, 
then it will be difficult to get the design right, potentially wasting a lot of time.

• Typically, we work with models of the system under design (SUD)

• Most actual systems require more objects: Hierarchy (+ abstraction)

• Behavioural hierarchy: states, processes, procedures

• Structural hierarchy: processors, racks, printed circuit boards

Models of Computation

What does it mean, “to compute”?
Models of computation define:
! Components and an execution model for

computations for each component
! Communication model for exchange of

information between components.

C-1

C-2

Requirements

• Presence of programming elements

• Executability (no algebraic specification)

• Support for the design of large systems (e.g. OO)

• Domain-specific support

• Readability

• Portability and flexibility

• Termination

• Support for non-standard I/O devices

• Non-functional properties

• Support for the design of dependable systems

• No obstacles for efficient implementation

• Adequate model of computation

Models of Computation

• Threads

• Message Passing

• Synchronous/Reactive (SR)

• Concurrent State Machines (Statecharts and variants)

• Dataflow

• Process Networks

• Rendezvous-based Models (CSP, CCS)

• Time-triggered Models

• Discrete-event Models

• Continuous-time with ODE solvers

Problems with Conventional Thread Model

• Even the core … notion of “computable” is at odds with the requirements of
embedded software.

• In this notion, useful computation terminates, but termination is undecidable.

• In embedded software, termination is failure.

• However, to get predictable timing, subcomputations must terminate  
(and we must be able to decide whether or not they terminate)

Imperative and Declarative Models

• Imperative

• Give algorithmic descriptions of behaviour which are directly executable

• Easy to produce examples and debug specifications

• Allows fast prototyping & implementation of systems

• Examples: Data Flow Diagrams (DFDs), Statecharts, Tabular Languages

• Declarative

• Specify properties that must be satisfied, not executable. Based on logic

• Normally easier to state & prove properties, but more difficult for design

• Examples: traditional logics - predicate & temporal; real-time logic

Dataflow Diagrams (DFD)

Data Flow

Function

Input

Output

Storage

Temperature

Plus

c

b

a

z

Display

plane_id

Position

Speed

Airspace_Status

position

plane_id

DFD Example

Item Trans control

Update

Cost
Compute

Bill

Bill

Start

Bill

Print

Bill

Bill
Customer

end transactionstart transaction

formatted_bill

new bill bill
bill

bill

unit cost

num items
item name

item,
name,
cost

Merits:
•Focuses on fundamental
elements of application &
data flow between them

Drawbacks:
•Scalability - DFDs for large
applications can blow up;
however, can be split into
smaller, more detailed
components
•Definitions ambiguous
mainly because of
informality - inputs arrive
simultaneously? how are
reads/writes handled?
•Absence of control - when
to trigger a function? for
conditional executions, is it
correct to execute a
function?

Decision Tables

Rule j

Ci

Cn

A1

Ak

An

c ij

akj

C1
c

a

a

a

11

11

kl

n1

n1
c

ci1

Guarded Actions

Conditions

Actions

10

Decision Tables

• jth rule reads: if Conditionsj then Actionj

• Columnj evaluates to True or False, depending on value of:

(((c1j = Y and C1) or (c1j = N and not (C1)))
and . . . and
((cnj = Y and Cn) or (cnj = N and not (Cn))))

• if a1j = X then do A1;
...
if amj = X then do Am;

bfranke/mob@inf.ed.ac.uk Embedded Software (Lecture 3) January 2011

State Machines

• Different forms of state machines are in use for modelling & designing systems

• Standard Finite State Machine (FSM) comprises

• a finite number of states

• a next state function which maps states & events into states

• FSM starts executing in its start state, moves from one state to another as
per next state function, until it reaches halt state or exhausts input

• Two types of FSMs (both equivalent): Moore & Mealy

• Moore FSM: Output = f(current state)

• Mealy FSM: Output = f(current state, inputs)

Synchronous FSM

• There is a separate synchronising clock signal

• Current state & inputs examined only at active instant in clock cycle

• Typically rising edge

• State changes only once in each clock cycle

• For Mealy machine, output is, typically, instantaneous function of inputs &
current state

• Include start signal as input

Asynchronous FSM

• State responds immediately to input, so need some other way to identify
each new input

• Model assumes that inputs do not change until machine settles into its new
state

• Common to describe an FSM using a state diagram:

• a labelled directed graph

• nodes represent states

• arcs represent transitions

FSM Example - Railway Crossing Gate

Closed Opening

Closing Open

cg og

o!o

cg

c!c

cg

og

og

cg og

FSM Limitations & Solutions

• Limited descriptive power - e.g. can’t recognise balanced parentheses

• Pure FSMs cannot model applications which produce output - Mealy
machines

• More powerful version of state machine allows guards, inputs, outputs &
actions on transitions: g → i/a/o

• g - guard (boolean expression, assertion or condition)

• i - input (e.g. event)

• a - sequence of actions

• o - output

• If machine is in state U, guard g is true & input i occurs, then perform
actions a, generate output o & enter state V

Extensions to FSMs for Embedded Specifications

• Need to be able to model concurrency & time

• Modelling concurrency:

• allow several FSMs to run in parallel

• describe communication & synchronisation between them

• make use of shared/distributed memory model

• Modelling timing constraints:

• specify transition firing times

• clocks & timing events

• Need to address problem of state explosion

Kahn process networks (KPN)

• Distributed Model of Computation

• Group of deterministic sequential processes

• Communicating through unbounded FIFO channels

• KPN exhibits deterministic behaviour

• Does not depend on the various computation or communication delays

• Common model for describing signal processing systems

• Infinite streams of data are incrementally transformed by processes
executing in sequence or parallel

KPN Example

A Kahn process network of three processes without feedback communication. 
Edges A, B and C are communication channels.  
One of the processes is named process P.

MoC Overview Chart

Communication/ 
local computations

Shared
memory

Message passing
Synchronous | Asynchronous

Undefined
components

 Plain text, use cases
 | (Message) sequence charts

Communicating finite
state machines

StateCharts SDL

Data flow Scoreboarding +
Tomasulo Algorithm 
(" Comp.Archict.)

Kahn networks,
SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)
model

VHDL*,
Verilog*,
SystemC*, …

Only experimental systems, e.g.
distributed DE in Ptolemy

Von Neumann model C, C++, Java C, C++, Java with libraries
CSP, ADA |

Summary

• Introduction to MoC

• Dataflow Diagrams, Decision Tables

• Finite State Machines (Sync./Async.)

• Kahn Process Networks

• Model of Computation Comparison

Preview

• Statecharts

• Coursework

