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Overview

• Introduction


• Dataflow Diagrams, Decision Tables, 


• Finite State Machines (FSM)


• Synchronous/Asynchronous FSM


• Extensions to FSM for Embedded Specification


• Kahn Process Networks



Motivation

• Why considering specification and models in detail?


• If something is wrong with the specification, 
then it will be difficult to get the design right, potentially wasting a lot of time.


• Typically, we work with models of the system under design (SUD)


• Most actual systems require more objects: Hierarchy (+ abstraction)


• Behavioural hierarchy: states, processes, procedures


• Structural hierarchy: processors, racks, printed circuit boards



Models of Computation

What does it mean, “to compute”? 
Models of computation define: 
! Components and an execution model for 

computations for each component 
! Communication model for exchange of 

information between components.
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Requirements

• Presence of programming elements

• Executability (no algebraic specification)

• Support for the design of large systems (e.g. OO)

• Domain-specific support

• Readability

• Portability and flexibility

• Termination

• Support for non-standard I/O devices

• Non-functional properties

• Support for the design of dependable systems

• No obstacles for efficient implementation

• Adequate model of computation



Models of Computation

• Threads


• Message Passing


• Synchronous/Reactive (SR)


• Concurrent State Machines (Statecharts and variants)


• Dataflow


• Process Networks


• Rendezvous-based Models (CSP, CCS)


• Time-triggered Models


• Discrete-event Models


• Continuous-time with ODE solvers



Problems with Conventional Thread Model

• Even the core … notion of “computable” is at odds with the requirements of 
embedded software.


• In this notion, useful computation terminates, but termination is undecidable.


• In embedded software, termination is failure.


• However, to get predictable timing, subcomputations must terminate  
(and we must be able to decide whether or not they terminate)



Imperative and Declarative Models

• Imperative 


• Give algorithmic descriptions of behaviour which are directly executable


• Easy to produce examples and debug specifications


• Allows fast prototyping & implementation of systems


• Examples: Data Flow Diagrams (DFDs), Statecharts, Tabular Languages


• Declarative 

• Specify properties that must be satisfied, not executable. Based on logic


• Normally easier to state & prove properties, but more difficult for design


• Examples: traditional logics - predicate & temporal; real-time logic



Dataflow Diagrams (DFD)
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DFD Example
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Merits:
•Focuses on fundamental 
elements of application & 
data flow between them

Drawbacks:
•Scalability - DFDs for large 
applications can blow up; 
however, can be split into 
smaller, more detailed 
components
•Definitions ambiguous 
mainly because of 
informality - inputs arrive 
simultaneously? how are 
reads/writes handled?
•Absence of control - when 
to trigger a function? for 
conditional executions, is it 
correct to execute a 
function?



Decision Tables
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Decision Tables

• jth rule reads: if Conditionsj then Actionj

• Columnj evaluates to True or False, depending on value of:

(( (c1j = Y and C1) or (c1j = N and not (C1)))
and . . . and
( (cnj = Y and Cn) or (cnj = N and not (Cn))) )

• if a1j = X then do A1;
...
if amj = X then do Am;
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State Machines

• Different forms of state machines are in use for modelling & designing systems


• Standard Finite State Machine (FSM) comprises


• a finite number of states


• a next state function which maps states & events into states


• FSM starts executing in its start state, moves from one state to another as 
per next state function, until it reaches halt state or exhausts input


• Two types of FSMs (both equivalent): Moore & Mealy


• Moore FSM: Output = f(current state)


• Mealy FSM: Output = f(current state, inputs)



Synchronous FSM

• There is a separate synchronising clock signal


• Current state & inputs examined only at active instant in clock cycle


• Typically rising edge


• State changes only once in each clock cycle


• For Mealy machine, output is, typically, instantaneous function of inputs & 
current state


• Include start signal as input



Asynchronous FSM

• State responds immediately to input, so need some other way to identify 
each new input


• Model assumes that inputs do not change until machine settles into its new 
state


• Common to describe an FSM using a state diagram: 


• a labelled directed graph


• nodes represent states


• arcs represent transitions



FSM Example - Railway Crossing Gate
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FSM Limitations & Solutions

• Limited descriptive power - e.g. can’t recognise balanced parentheses


• Pure FSMs cannot model applications which produce output - Mealy 
machines


• More powerful version of state machine allows guards, inputs, outputs & 
actions on transitions: g → i/a/o


• g - guard (boolean expression, assertion or condition)


• i - input (e.g. event)


• a - sequence of actions


• o - output


• If machine is in state U, guard g is true & input i occurs, then perform 
actions a, generate output o & enter state V



Extensions to FSMs for Embedded Specifications

• Need to be able to model concurrency & time


• Modelling concurrency:


• allow several FSMs to run in parallel


• describe communication & synchronisation between them


• make use of shared/distributed memory model


• Modelling timing constraints: 


• specify transition firing times


• clocks & timing events


• Need to address problem of state explosion



Kahn process networks (KPN)

• Distributed Model of Computation


• Group of deterministic sequential processes


• Communicating through unbounded FIFO channels


• KPN exhibits deterministic behaviour


• Does not depend on the various computation or communication delays


• Common model for describing signal processing systems


• Infinite streams of data are incrementally transformed by processes 
executing in sequence or parallel



KPN Example

A Kahn process network of three processes without feedback communication. 
Edges A, B and C are communication channels.  
One of the processes is named process P.



MoC Overview Chart
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Summary

• Introduction to MoC


• Dataflow Diagrams, Decision Tables


• Finite State Machines (Sync./Async.)


• Kahn Process Networks


• Model of Computation Comparison



Preview

• Statecharts


• Coursework


