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Overview

e Motivation

e \Worst-Case Execution Time Analysis

* Types of Execution Times

* Measuring vs. Analysing

e Flow Analysis

e | ow-Level Analysis

e Calculation



Motivation: Characteristics of Real-Time Systems

e Concurrent control of separate system components
e Reactive behaviour

e Guaranteed response times

¢ |nteraction with special purpose hardware

e Maintenance usually difficult

e Harsh environment

e Constrained resources

e Often cross-development

¢ | arge and complex

e Often have to be extremely dependable



What is the “Execution Time” of a program?®
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Must consider all possible inputs—including perhaps inputs that violate specification.



Why may we care about the WC
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e \We are interested in WCET to. ..

e perform schedulability anaylsis

® ensure meeting deadlines

® assess resource needs for real-time systems

e WCET accuracy may be safety-critical!



And why may we care about the
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e \We are interested in BCET to. . .

e benchmark hardware

® assess code quality

® assess resource needs for non/soft real-time systems

e ensure meeting livelines (new starting points)



What is the “Execution Time” of a program?
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e Approaches for approximating WCET or BCET

e Measuring: Measure run time of program on target hardware

e Analysis: Compute estimate of run time, based on program analysis and
model of target hardware

e Hybrid: Combine measurements with program analysis



Measuring WCET/BCET

e Execution time may depend on program inputs

* |In this case, quality of measurements depends on judicious choice of
iInputs

e Execution time may depend on execution context
(cache content, state of pipeline, ...)

* Typically need to add safety margin to best/worst result measured

e Extensive testing/measurement still common practice



Measuring Program Run Times

e Call OS timing routines

e Account for cost of calls to timing routines themselves
e Access hardware timers directly
e Use external hardware

e Oscilloscope, Logic analyser
e Count emulator cycles

e High water marking
e Continuously record max execution times
e Standard feature of RTOSs
e May include this in shipped products

e Read at service intervals



Analysing WCET/BCET

¢ Instead of measuring execution times, compute them
e Advantages
e Can ensure safety of result
e Saves testing effort
e Disadvantages
¢ Try to be as tight as possible—may not always succeed
e Typically requires extensive analysis effort
e Accuracy depends on
e Complexity of hardware
e Program structure
e Quality of hardware model

e Program analysis capabilities



Analysing WC
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Flow Analysis

e Analyse dynamic behaviour of program

e Number of loop iterations, Recursion depth, Input dependences, Infeasible
paths, Function instances, ...

e Get information from
e Static Analysis
e Manual Annotation
e Analysis level
e Object code

e Source code (may need non-trivial mapping to object code)



Flow Analysis
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Flow Analysis

e The set of structurally possible flows for a program, i.e. those given by the
structure of the program, is usually infinite, since e.g. loops can be taken an
arbitrary number of times

e The executions are made finite by bounding all loops with some upper limit
on the number of executions (basic finiteness)

e Adding even more information, e. g. about the input data, allows the set of
executions to be narrowed down further, to a set of statically allowed paths.
This is the “optimal” outcome of the flow analysis.



Flow Analysis

const int max = 100;
foo (float x) {
A: for(i =1; i <= max; i++) {
B: if (x > 5)
C: X = X * 2;
else
D: X = x + 2;
E: if (x < 0)
F: bli] = al[i];
G: bar (i)
1}

e Loop bounds: Easy to find in this example; in general, very difficult to
determine

¢ Infeasible paths: Can we exclude a path, based on data analysis?
A-B-C-E-F-G is infeasible—since if x>5, it is not possible that x * 2 < 0.
Well, really? What about integer overflows? Must be sure that these do not
happen in the example...



Low-Level Analysis
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e Account for hardware effects (pipeline, caches...)

e \Work on object code

e Exact analysis generally not possible



Low-Level Analysis

e Global Low-Level Analysis

e Considers execution time effects of machine features that reach across
entire program

¢ |Instruction/data caches, branch predictors, translation lookaside buffers
(TLBs)

¢ | ocal Low-Level Analysis
e Considers machine features that affect single instruction & its neighbours

e Scalar/superscalar pipelines



Local Low-Level Analysis - Pipelining
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e Pipeline effect of two successive instructions

e Pipeline overlap reduces overall computation time by 9 = —2



Local Low-Level Analysis - Pipelining
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* Pipelining effect of three successive instructions

e Reduction of combining three instructions can be larger than sum of savings
when combining them pair-wise!



Global Low-Level Analysis - Caches

¢ |Instruction Caches

e Predictable from control flow

e Data Caches

e No simple way to predict accesses

¢ Very difficult analysis problem

¢ Unified Caches

¢ \/ery pessimistic as a result of combining instructions & data



Global Low-Level Analysis - Caches
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e May split loops to differentiate between first and successive loop iterations

e Must combine with pipelining effects



WCET Calculation
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e Task: Find the path that results in the longest execution time

e Several approaches in use

e Properties of approaches

¢ Program flow allowed

e Object code structure (optimisations?)

e Pipeline effect modelling

e Solution complexity



WCET Calculation

e Path-based

e Constraint-based
Implicit Path Enumeration Technique - IPET

e Structure-based



WG

=T Calculation
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[Wilhelm-+08]



Path-

Based

Bound Calculation

e Upper bound for a task is determined by computing bounds for different
paths in the task, searching for the overall path with the longest execution

time.

e Defining feature is that possible execution paths are represented explicitly.

e Natural within a single loop iteration, but problems with flow information
extending across loop nesting levels.

e Number of paths is exponential in the number of branch points.

e Possibly requiring heuristic search methods.



Implicit Path Enumeration

e Program flow and basic block execution time bounds are combined into sets
of arithmetic constraints.

e Each basic block and program flow edge in the task is given a time
coefficient, expressing the upper bound of the contribution of that entity to
the total execution time every time it is executed.



Structure-based Bound Calculation

e Upper bound is calculated in a bottom-up traversal of the syntax tree of the
task combining bounds computed for constituents of statements according
to combination rules for that type of statement.

* Not every control flow can be expressed through the syntax tree

e Assumes straight-forward correspondence between source structures and
the target program

e Not easily admitting code optimisations

¢ In general, not possible to add additional flow information (as in IPET).



Summary

e Motivation

e \Worst-Case Execution Time Analysis

* Types of Execution Times

* Measuring vs. Analysing

e Flow Analysis

e | ow-Level Analysis

e \WCET Calculation



Praview

e Real-Time Operating Systems

e MQX



