—mbedded Systems
_ecture 11: Worst-Case

Bjorn Franke
University of Edinburgh

—Xxecution

3
~ THE UNIVERSITY of EDINBURGH

Wl
~
oy | <
N T e =1
- -
o iy
TRV
P 3 &
Orne®

ime

Overview

e Motivation

e \Worst-Case Execution Time Analysis

* Types of Execution Times

* Measuring vs. Analysing

e Flow Analysis

e | ow-Level Analysis

e Calculation

Motivation: Characteristics of Real-Time Systems

e Concurrent control of separate system components
e Reactive behaviour

e Guaranteed response times

¢ |nteraction with special purpose hardware

e Maintenance usually difficult

e Harsh environment

e Constrained resources

e Often cross-development

¢ | arge and complex

e Often have to be extremely dependable

What is the “Execution Time” of a program?®

Lower
timing BCET
bound

distribution of times

Minimal

=~

worst-case performance

worst-case quarantee

The actual WCET
must be found or
| upper bounded

<«—— measured execution times ——

possible execution times

WCET: Worst-Case Execution Time
BCET: Best-Case Execution Time
ACET: Average-Case Execution Time

The WCET/BCET is the longest/shortest execution time possible for a program.

timing predictability

Maximal
Upper
observed _al
executlon WCET ggﬂﬂ%
time
—
time
|
>
[Wilhelm+-08]

Must consider all possible inputs—including perhaps inputs that violate specification.

Why may we care about the WC

= s

e \We are interested in WCET to. ..

e perform schedulability anaylsis

® ensure meeting deadlines

® assess resource needs for real-time systems

e WCET accuracy may be safety-critical!

And why may we care about the

3C

= s

e \We are interested in BCET to. . .

e benchmark hardware

® assess code quality

® assess resource needs for non/soft real-time systems

e ensure meeting livelines (new starting points)

What is the “Execution Time” of a program?

actual actual
BCET WCET
safe BCET . L v safe WCET
estimates possible execution times estimates
| . « time
0 tighter tighter

[EngblomESO1]

e Approaches for approximating WCET or BCET

e Measuring: Measure run time of program on target hardware

e Analysis: Compute estimate of run time, based on program analysis and
model of target hardware

e Hybrid: Combine measurements with program analysis

Measuring WCET/BCET

e Execution time may depend on program inputs

* |In this case, quality of measurements depends on judicious choice of
iInputs

e Execution time may depend on execution context
(cache content, state of pipeline, ...)

* Typically need to add safety margin to best/worst result measured

e Extensive testing/measurement still common practice

Measuring Program Run Times

e Call OS timing routines

e Account for cost of calls to timing routines themselves
e Access hardware timers directly
e Use external hardware

e Oscilloscope, Logic analyser
e Count emulator cycles

e High water marking
e Continuously record max execution times
e Standard feature of RTOSs
e May include this in shipped products

e Read at service intervals

Analysing WCET/BCET

¢ Instead of measuring execution times, compute them
e Advantages
e Can ensure safety of result
e Saves testing effort
e Disadvantages
¢ Try to be as tight as possible—may not always succeed
e Typically requires extensive analysis effort
e Accuracy depends on
e Complexity of hardware
e Program structure
e Quality of hardware model

e Program analysis capabilities

Analysing WC

Program
Source

.

v

Compiler

C

Object
Code

- 1/BCE

Flow
Analysis

v

Global Low-
Level Analysis

v

Calculation

—»(WCET)

Local Low-
Level Analysis

[EngblomES01]

Flow Analysis

e Analyse dynamic behaviour of program

e Number of loop iterations, Recursion depth, Input dependences, Infeasible
paths, Function instances, ...

e Get information from
e Static Analysis
e Manual Annotation
e Analysis level
e Object code

e Source code (may need non-trivial mapping to object code)

Flow Analysis

=_— = e
=
— — = —
— — — ==
— — — — —

Structurally possible flows (infinite) \

Basic finiteness \

Statically allowed

Actual feasible |
\ paths

WCET found here=desired result

WCET found here=overestimation
[EngblomESO01]

Flow Analysis

e The set of structurally possible flows for a program, i.e. those given by the
structure of the program, is usually infinite, since e.g. loops can be taken an
arbitrary number of times

e The executions are made finite by bounding all loops with some upper limit
on the number of executions (basic finiteness)

e Adding even more information, e. g. about the input data, allows the set of
executions to be narrowed down further, to a set of statically allowed paths.
This is the “optimal” outcome of the flow analysis.

Flow Analysis

const int max = 100;
foo (float x) {
A: for(i =1; i <= max; i++) {
B: if (x > 5)
C: X = X * 2;
else
D: X = x + 2;
E: if (x < 0)
F: bli] = al[i];
G: bar (i)
1}

e Loop bounds: Easy to find in this example; in general, very difficult to
determine

¢ Infeasible paths: Can we exclude a path, based on data analysis?
A-B-C-E-F-G is infeasible—since if x>5, it is not possible that x * 2 < 0.
Well, really? What about integer overflows? Must be sure that these do not
happen in the example...

Low-Level Analysis

Program
Source

Compiler

Flow
Analysis

v

N

Global Low-
Level Analysis

Calculation

—>(WCET)

v

Local Low-
Level Analysis

e Determine execution time for program parts

[EngblomESO1]

e Account for hardware effects (pipeline, caches...)

e \Work on object code

e Exact analysis generally not possible

Low-Level Analysis

e Global Low-Level Analysis

e Considers execution time effects of machine features that reach across
entire program

¢ |Instruction/data caches, branch predictors, translation lookaside buffers
(TLBs)

¢ | ocal Low-Level Analysis
e Considers machine features that affect single instruction & its neighbours

e Scalar/superscalar pipelines

Local Low-Level Analysis - Pipelining

] 1 mm [I]| .ll A= 5,.=—2 t.=4
] O = | [L A —p
F F F

H_J N ~ J N ~ J
T(A)=3 T(B)=4 T(AB)=5 . o _
(c) Modeling the timing using
(a) Separate execution (b) Sequence execution times and timing effects
[EngblomJ02]

e Pipeline effect of two successive instructions

e Pipeline overlap reduces overall computation time by 9 = —2

Local Low-Level Analysis - Pipelining

IF
[
u o8 A
T(A)=8 8,n= —2 j \
o =
ﬂ“ Op=—2 \/ :
/ T(AB 5, =5
Instruction B t =8| ¢c
stalls, waiting C
for A to leave
the M stage
(a) Execution times (b) Timing model

[EngblomJ02]
* Pipelining effect of three successive instructions

e Reduction of combining three instructions can be larger than sum of savings
when combining them pair-wise!

Global Low-Level Analysis - Caches

¢ |Instruction Caches

e Predictable from control flow

e Data Caches

e No simple way to predict accesses

¢ Very difficult analysis problem

¢ Unified Caches

¢ \/ery pessimistic as a result of combining instructions & data

Global Low-Level Analysis - Caches

Basic block =111 Q
GV 1020: add r1,r2 5 =4 5 =
/ 1022: 1d ‘x',r3 OR / \\ QS
S 006 ., | Execution || t.=15 R S ;=17
exec exec .cmp rl,r Informatlon
. \ 7 o =- o =-
028 oge e 1020: icache miss RT \—/ ST
T 1022: icache hit, T|{=5
S dmem SRAM 5 =
1026: icache hit TU
U 1028: icache hit t,=19
exec
Timing graph with execution information After pipeline analysis
[StappertEEO1]

e May split loops to differentiate between first and successive loop iterations

e Must combine with pipelining effects

WCET Calculation

Program
Source

v

Flow
Analysis

Compiler

v

N

Global Low-
Level Analysis

v

Local Low-
Level Analysis

Calculation

—>(WCET)

[EngblomESO1]

e Task: Find the path that results in the longest execution time

e Several approaches in use

e Properties of approaches

¢ Program flow allowed

e Object code structure (optimisations?)

e Pipeline effect modelling

e Solution complexity

WCET Calculation

e Path-based

e Constraint-based
Implicit Path Enumeration Technique - IPET

e Structure-based

WG

=T Calculation

start start
maxiter: Longest path // Start and exit constraints
100 marked Xstart = 15 Xoxit = 1
// Structural constraints
// Unit timin Xstart = XstartA
t.. =31 7 XA = Xstarta ¥ XHA = Xaexit ¥ XaB
e 2 Xg = Xap = Xgc * Xgp
header = XC = ch = xCE
// WCET Calc Xy = Xpy * XgH = Xya
WCET = Xexit = XAexit
theader * tpath * // Loopbound constraint
(maxiter-1) = xa<100
20331 o // WCET Expression
WCET = max(x,*3 + xg*5 +
XC*7 + ...+ XH*Z) -
= 3072
exit exit
(a) Control-flow
graph with timing (b) Path-based calculation (c) IPET calculation
loop start start @ start
A/ - 3[A] 3
sed A Final
7 3o g
— | | (
B c\ D if ™~ H J
1 3072
E = G S A,B,C,D
Syntax-tree E,F,GH
EFG|(14
T(seq(S1,S2)) = T(S1) +T(S2)
T(if(Exp) S1 else S2) = Eren |28
T(Exp) + max(T(S1),T(S2)) 2 J
T(loop(Exp,Body)) = \;/
T(Exp) +
(T(Exp) +T(Body)) * (maxiter-1) exit exit é exit
Transformation rules (d) Structure-based calculation

[Wilhelm-+08]

Path-

Based

Bound Calculation

e Upper bound for a task is determined by computing bounds for different
paths in the task, searching for the overall path with the longest execution

time.

e Defining feature is that possible execution paths are represented explicitly.

e Natural within a single loop iteration, but problems with flow information
extending across loop nesting levels.

e Number of paths is exponential in the number of branch points.

e Possibly requiring heuristic search methods.

Implicit Path Enumeration

e Program flow and basic block execution time bounds are combined into sets
of arithmetic constraints.

e Each basic block and program flow edge in the task is given a time
coefficient, expressing the upper bound of the contribution of that entity to
the total execution time every time it is executed.

Structure-based Bound Calculation

e Upper bound is calculated in a bottom-up traversal of the syntax tree of the
task combining bounds computed for constituents of statements according
to combination rules for that type of statement.

* Not every control flow can be expressed through the syntax tree

e Assumes straight-forward correspondence between source structures and
the target program

e Not easily admitting code optimisations

¢ In general, not possible to add additional flow information (as in IPET).

Summary

e Motivation

e \Worst-Case Execution Time Analysis

* Types of Execution Times

* Measuring vs. Analysing

e Flow Analysis

e | ow-Level Analysis

e \WCET Calculation

Praview

e Real-Time Operating Systems

e MQX

