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Motivation: Characteristics of Real-Time Systems

• Concurrent control of separate system components

• Reactive behaviour

• Guaranteed response times

• Interaction with special purpose hardware

• Maintenance usually difficult

• Harsh environment

• Constrained resources

• Often cross-development

• Large and complex

• Often have to be extremely dependable



What is the “Execution Time” of a program?
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What is the “Execution Time” of a Program?The Worst-Case Execution-Time Problem • 36:3

Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset
of measured executions. Its minimum and maximum are the minimal and maximal observed exe-
cution times, respectively. The darker curve, an envelope of the former, represents the times of all
executions. Its minimum and maximum are the best- and worst-case execution times, respectively,
abbreviated BCET and WCET.

exhaustively explore all possible executions and thereby determine the exact
worst- and best-case execution times.

Today, in most parts of industry, the common method to estimate execution-
time bounds is to measure the end-to-end execution time of the task for a subset
of the possible executions—test cases. This determines the minimal observed
and maximal observed execution times. These will, in general, overestimate the
BCET and underestimate the WCET and so are not safe for hard real-time
systems. This method is often called dynamic timing analysis.

Newer measurement-based approaches make more detailed measurements
of the execution time of different parts of the task and combine them to give
better estimates of the BCET and WCET for the whole task. Still, these methods
are rarely guaranteed to give bounds on the execution time.

Bounds on the execution time of a task can be computed only by methods that
consider all possible execution times, that is, all possible executions of the task.
These methods use abstraction of the task to make timing analysis of the task
feasible. Abstraction loses information, so the computed WCET bound usually
overestimates the exact WCET and vice versa for the BCET. The WCET bound
represents the worst-case guarantee the method or tool can give. How much
is lost depends both on the methods used for timing analysis and on overall
system properties, such as the hardware architecture and characteristics of the
software. These system properties can be subsumed under the notion of timing
predictability.

The two main criteria for evaluating a method or tool for timing analysis
are thus safety—does it produce bounds or estimates?— and precision—are the
bounds or estimates close to the exact values?

Performance prediction is also required for application domains that do not
have hard real-time characteristics. There, systems may have deadlines, but
are not required to absolutely observe them. Different methods may be applied
and different criteria may be used to measure the quality of methods and tools.
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WCET: Worst-Case Execution Time
BCET: Best-Case Execution Time
ACET: Average-Case Execution Time
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� The WCET/BCET ist the longest/shortest execution time
possible for a program

� Must consider all possible inputs—including perhaps inputs
that violate specification
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Why may we care about the WCET?

We are interested in WCET to . . .

� perform schedulability anaylsis

� ensure meeting deadlines

� assess resource needs for real-time systems

WCET-Accuracy may be safety-critical!

Embedded Real-Time Systems SS 2010, Lecture 15 Slide 6

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

And why may we care about the BCET?

We are interested in BCET to . . .

� benchmark hardware

� assess code quality

� assess resource needs for non/soft real-time systems

� ensure meeting live lines

Embedded Real-Time Systems SS 2010, Lecture 15 Slide 7

WCET: Worst-Case Execution Time
BCET: Best-Case Execution Time
ACET: Average-Case Execution Time

The WCET/BCET is the longest/shortest execution time possible for a program.
Must consider all possible inputs—including perhaps inputs that violate specification.



Why may we care about the WCET?

• We are interested in WCET to. . .

• perform schedulability anaylsis

• ensure meeting deadlines

• assess resource needs for real-time systems

• WCET accuracy may be safety-critical!



And why may we care about the BCET?

• We are interested in BCET to. . .

• benchmark hardware

• assess code quality

• assess resource needs for non/soft real-time systems

• ensure meeting livelines (new starting points)



What is the “Execution Time” of a program?

• Approaches for approximating WCET or BCET

• Measuring: Measure run time of program on target hardware

• Analysis: Compute estimate of run time, based on program analysis and 
model of target hardware

• Hybrid: Combine measurements with program analysis
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Calculation

What is the “Execution Time” of a Program?

actual
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actual
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possible execution times safe WCET
estimates
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estimates

tighter tighter
time0

Figure 3. Relation between WCET, BCET, and
Possible Program Execution Times

end, we need to perform basic research into particular

methods, design a sound architecture for a tool, and

find a way to come in contact with the development

tools market.

On the research side, we are building a proto-

type system, integrating useful results from other re-

searchers and filling in the missing gaps. We work from

the low-level, basing our models on the hardware view

of the software (i.e. the object code), since this is the

only level at which all effects of the hardware and the

programming environment is visible.

Regarding architecture, we are making the struc-

ture of the WCET tool as modular as possible, both to

ease retargeting to new target hardware and to make it

possible to use the components in other ways than just

WCET analysis. For instance, flow analysis is useful

for compiler optimizations.

On the industrial adaption end, we cooperate with

IAR Systems (Uppsala, Sweden), a vendor of em-

bedded system programming tools. We aim to inte-

grate WCET analysis into their development products.

WCET analysis is most appropriate as a new tool in-

side a familiar environment, not as a stand-alone tool.

We believe that this integration with accepted tools

is the best way to get WCET analysis accepted on

the market, and to make practitioners in the real-time

field actually use execution-time analysis. To be re-

ally useful and to actually realize the potential benefits,

WCET analysis should be employed on a daily basis.

3. WCET Analysis Overview and Re-

lated Work

The goal of WCET analysis is to generate a safe
(i.e. no underestimation) and tight (i.e. small overes-

timation) estimate of the worst-case execution time of

a program (or program fragment). A related prob-

lem is that of finding the Best-Case Execution Time
(BCET) of a program. See Figure 3 for an illustration

of WCET, BCET, tightness, and safe estimates. An-

other execution time estimate is the average execution

time, which is much harder to obtain analytically, since

it requires statistical profiles of input data, instead of

just boundary values, together with methods that can

take advantage of such information.
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Figure 4. Components of WCET Analysis

When performing WCET analysis, it is assumed

that there are no interfering background activities,

such as direct memory access (DMA) or refresh of

DRAM and that the program execution is uninter-

rupted (no preemptions or interrupts). Timing inter-

ference caused by such resource contention, for instance

cache interference between tasks, should be handled by

some subsequent analysis, e.g. schedulability analysis

[3, 29, 46].

3.1. Main Components of WCET Analysis
To generate a WCET estimate, we consider a pro-

gram to be processed through the following main steps:

• The program flow analysis calculates the possible

flows through the program.

• The low-level analysis calculates the execution time

for the instructions (in the detailed discussion below,

low-level analysis is further divided into global low-
level analysis and local low-level analysis).

• The calculation combines the above results into a

WCET estimate.

Figure 4 shows the flow of information between these

components. This structure serves as a conceptual clas-

sification of WCET research.

Program Flow Analysis
The task of program flow analysis is to determine

the possible paths through a program, i.e. the dynamic

behavior of the program. The result of the flow analy-

sis is information about which functions get called, how

many times loops iterate, if there are dependencies be-

tween different if-statements, etc. Since the problem

is computationally intractable in the general case, a

simpler, approximate analysis is normally performed.

This analysis must yield safe path information, i.e. all

feasible paths must always be covered by the approxi-

mation.

The flow information can be calculated manually,

and communicated to the WCET tool by enteringman-
ual annotations into the program [43], or giving the

flow information separately [20, 30, 41, 44].
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Approaches for approximating WCET or BCET:

Measuring: Measure run time of program on target hardware

Analysis: Compute estimate of run time, based on program
analysis and model of target hardware

Hybrid: Combine measurements with program analysis
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Worst-Case Execution Time Analysis
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Measuring WCET/BCET

� Execution time may depend on program inputs

� In this case, quality of measurements depends on judicious
choice of inputs

� Execution time may depend on execution context
Cache contents, state of pipeline, etc.

� Typically need to add safety margin to best/worst result
measured

� Extensive testing/measurement still the state of the
practice
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Measuring Program Run Times

� Call OS timing routines (see lecture “Measuring Execution
Time”)

� Access hardware timers directly
� Use external hardware

� Oscilloscope
� Logic analyzer

� Count emulator cycles
� Do high water marking

� Continuously record max execution times
� Standard feature of RTOSs
� May include this in shipped products
� Read at service intervals
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Analyzing WCET/BCET

� Instead of measuring execution times, compute them
� Advantages:

� Can ensure safety of result
� Saves testing effort

� Disadvantages:
� Try to be as tight as possible—may not always succeed
� Typically requires extensive analysis effort

� Accuracy depends on
� Complexity of hardware
� Program structure
� Quality of hardware model
� Program analysis capabilities
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Measuring WCET/BCET

• Execution time may depend on program inputs

• In this case, quality of measurements depends on judicious choice of 
inputs

• Execution time may depend on execution context
(cache content, state of pipeline, ...)

• Typically need to add safety margin to best/worst result measured

• Extensive testing/measurement still common practice



Measuring Program Run Times

• Call OS timing routines

• Account for cost of calls to timing routines themselves

• Access hardware timers directly

• Use external hardware

• Oscilloscope, Logic analyser

• Count emulator cycles

• High water marking

• Continuously record max execution times

• Standard feature of RTOSs

• May include this in shipped products

• Read at service intervals



Analysing WCET/BCET

• Instead of measuring execution times, compute them

• Advantages

• Can ensure safety of result

• Saves testing effort

• Disadvantages

• Try to be as tight as possible—may not always succeed

• Typically requires extensive analysis effort

• Accuracy depends on

• Complexity of hardware

• Program structure

• Quality of hardware model

• Program analysis capabilities



Analysing WCET/BCET
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Analyzing WCET/BCET
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Figure 3. Relation between WCET, BCET, and
Possible Program Execution Times

end, we need to perform basic research into particular

methods, design a sound architecture for a tool, and

find a way to come in contact with the development

tools market.

On the research side, we are building a proto-

type system, integrating useful results from other re-

searchers and filling in the missing gaps. We work from

the low-level, basing our models on the hardware view

of the software (i.e. the object code), since this is the

only level at which all effects of the hardware and the

programming environment is visible.

Regarding architecture, we are making the struc-

ture of the WCET tool as modular as possible, both to

ease retargeting to new target hardware and to make it

possible to use the components in other ways than just

WCET analysis. For instance, flow analysis is useful

for compiler optimizations.

On the industrial adaption end, we cooperate with

IAR Systems (Uppsala, Sweden), a vendor of em-

bedded system programming tools. We aim to inte-

grate WCET analysis into their development products.

WCET analysis is most appropriate as a new tool in-

side a familiar environment, not as a stand-alone tool.

We believe that this integration with accepted tools

is the best way to get WCET analysis accepted on

the market, and to make practitioners in the real-time

field actually use execution-time analysis. To be re-

ally useful and to actually realize the potential benefits,

WCET analysis should be employed on a daily basis.

3. WCET Analysis Overview and Re-

lated Work

The goal of WCET analysis is to generate a safe
(i.e. no underestimation) and tight (i.e. small overes-

timation) estimate of the worst-case execution time of

a program (or program fragment). A related prob-

lem is that of finding the Best-Case Execution Time
(BCET) of a program. See Figure 3 for an illustration

of WCET, BCET, tightness, and safe estimates. An-

other execution time estimate is the average execution

time, which is much harder to obtain analytically, since

it requires statistical profiles of input data, instead of

just boundary values, together with methods that can

take advantage of such information.
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When performing WCET analysis, it is assumed

that there are no interfering background activities,

such as direct memory access (DMA) or refresh of

DRAM and that the program execution is uninter-

rupted (no preemptions or interrupts). Timing inter-

ference caused by such resource contention, for instance

cache interference between tasks, should be handled by

some subsequent analysis, e.g. schedulability analysis

[3, 29, 46].

3.1. Main Components of WCET Analysis
To generate a WCET estimate, we consider a pro-

gram to be processed through the following main steps:

• The program flow analysis calculates the possible

flows through the program.

• The low-level analysis calculates the execution time

for the instructions (in the detailed discussion below,

low-level analysis is further divided into global low-
level analysis and local low-level analysis).

• The calculation combines the above results into a

WCET estimate.

Figure 4 shows the flow of information between these

components. This structure serves as a conceptual clas-

sification of WCET research.

Program Flow Analysis
The task of program flow analysis is to determine

the possible paths through a program, i.e. the dynamic

behavior of the program. The result of the flow analy-

sis is information about which functions get called, how

many times loops iterate, if there are dependencies be-

tween different if-statements, etc. Since the problem

is computationally intractable in the general case, a

simpler, approximate analysis is normally performed.

This analysis must yield safe path information, i.e. all

feasible paths must always be covered by the approxi-

mation.

The flow information can be calculated manually,

and communicated to the WCET tool by enteringman-
ual annotations into the program [43], or giving the

flow information separately [20, 30, 41, 44].
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Flow Analysis
Analyze dynamic behaviour of program

� Number of loop iterations

� Recursion depth

� Input dependencies

� Infeasible paths

� Function instances

Get information from

� Static analysis

� Manual annotations

Analysis level:

� Object code

� Source code (may need non-trivial mapping to object code)
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Figure 5. Detailed Overview of Our WCET System
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Figure 6. Effects of Flow Information

a pipeline that allows some instruction combinations
to be issued on the same clock-cycle, and several com-
plex instructions that address the typical embedded
needs of bit manipulation and compact code. These
features make it an appropriate vehicle for our exper-
iments. Good contacts with NEC Europe also made
information, support, and hardware available.

The compiler is a modified IAR V850/V850E
C/Embedded C++ compiler [27] which emits the ob-
ject code of the program in an accessible format. We
only support C code in our prototype tool.

At present, each program must be contained in a
single source file, since we need access to the whole pro-
gram. In the future, we plan to integrate our tools with
a whole-program compiler developed by the ASTEC
WPO Project [45], which will remove the single-file
limitation.

The simulator is a cycle-accurate model of the
V850E [39], created in our research group using a
homegrown generic framework for modeling pipelined
processors.

At present, we have a prototype implementation of
the low-level analysis: instruction cache analysis and
pipeline analysis for the NEC V850E (based on the
simulator). The prototype tool accepts input in the
form of object-code files from the compiler and files
containing flow information.

The calculation is either performed using IPET or
Path-Based Techniques.

5. Flow Analysis

The set of structurally possible flows for a program,
i.e. those given by the structure of the program, is usu-
ally infinite, since, e.g. loops can be taken an arbitrary
number of times.

The executions are made finite by bounding all loops
with some upper limit on the number of executions
(basic finiteness). Adding even more information, e.g.
about the input data, allows the set of executions to
be narrowed down further, to a set of statically allowed
paths. This is the “optimal” outcome of the flow anal-
ysis. Figure 6 provides an illustration of the different
levels of approximation. Note that the set of actual fea-
sible paths might be smaller than the statically allowed
paths, due to approximations.

The task of the flow analysis is to identify the possi-
ble ways a program can execute. Deciding which of the
possible paths that actually generate the worst execu-
tion time is done in the subsequent calculation phase.

We therefore consider flow information handling to
be divided into three phases:

1. Flow information extraction: Obtaining flow in-
formation by manual annotations or automatic flow
analysis.

2. Flow representation: Representing the results of
the flow analysis in a uniform manner.

3. Conversion for calculation: Converting the con-
trol flow (as represented in the flow representation)
to a format suitable for the WCET calculation.

We believe that an interaction between manual an-
notations and automatic flow analysis is the best choice
for flow information extraction. However, to avoid te-
dious work and errors from the programmer we should
rely on automatic flow analysis as much as possible.

5.1. Representing Flow Information
To help us obtain tight WCET estimates, we have

defined a flow representation formalism that is power-
ful enough to describe the complex flows found in em-
bedded real-time systems (as discussed in Section 2.3).
The representation is flexible enough to capture the
output from a variety of flow analysis methods and
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Quoting [EngblomES01]:

� The set of structurally possible flows for a program, i. e. those
given by the structure of the program, is usually infinite, since,

e. g. loops can be taken an arbitrary number of times

� The executions are made finite by bounding all loops with

some upper limit on the number of executions (basic

finiteness)

� Adding even more information, e. g. about the input data,

allows the set of executions to be narrowed down further, to a

set of statically allowed paths. This is the “optimal” outcome

of the flow analysis.



Flow Analysis

• Analyse dynamic behaviour of program

• Number of loop iterations, Recursion depth, Input dependences, Infeasible 
paths, Function instances, ...

• Get information from

• Static Analysis

• Manual Annotation

• Analysis level

• Object code

• Source code (may need non-trivial mapping to object code)
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Possible Program Execution Times

end, we need to perform basic research into particular

methods, design a sound architecture for a tool, and

find a way to come in contact with the development

tools market.

On the research side, we are building a proto-

type system, integrating useful results from other re-

searchers and filling in the missing gaps. We work from

the low-level, basing our models on the hardware view

of the software (i.e. the object code), since this is the

only level at which all effects of the hardware and the

programming environment is visible.

Regarding architecture, we are making the struc-

ture of the WCET tool as modular as possible, both to

ease retargeting to new target hardware and to make it

possible to use the components in other ways than just

WCET analysis. For instance, flow analysis is useful

for compiler optimizations.

On the industrial adaption end, we cooperate with

IAR Systems (Uppsala, Sweden), a vendor of em-

bedded system programming tools. We aim to inte-

grate WCET analysis into their development products.

WCET analysis is most appropriate as a new tool in-

side a familiar environment, not as a stand-alone tool.

We believe that this integration with accepted tools

is the best way to get WCET analysis accepted on

the market, and to make practitioners in the real-time

field actually use execution-time analysis. To be re-

ally useful and to actually realize the potential benefits,

WCET analysis should be employed on a daily basis.

3. WCET Analysis Overview and Re-

lated Work

The goal of WCET analysis is to generate a safe
(i.e. no underestimation) and tight (i.e. small overes-

timation) estimate of the worst-case execution time of

a program (or program fragment). A related prob-

lem is that of finding the Best-Case Execution Time
(BCET) of a program. See Figure 3 for an illustration

of WCET, BCET, tightness, and safe estimates. An-

other execution time estimate is the average execution

time, which is much harder to obtain analytically, since

it requires statistical profiles of input data, instead of

just boundary values, together with methods that can

take advantage of such information.
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When performing WCET analysis, it is assumed

that there are no interfering background activities,

such as direct memory access (DMA) or refresh of

DRAM and that the program execution is uninter-

rupted (no preemptions or interrupts). Timing inter-

ference caused by such resource contention, for instance

cache interference between tasks, should be handled by

some subsequent analysis, e.g. schedulability analysis

[3, 29, 46].

3.1. Main Components of WCET Analysis
To generate a WCET estimate, we consider a pro-

gram to be processed through the following main steps:

• The program flow analysis calculates the possible

flows through the program.

• The low-level analysis calculates the execution time

for the instructions (in the detailed discussion below,

low-level analysis is further divided into global low-
level analysis and local low-level analysis).

• The calculation combines the above results into a

WCET estimate.

Figure 4 shows the flow of information between these

components. This structure serves as a conceptual clas-

sification of WCET research.

Program Flow Analysis
The task of program flow analysis is to determine

the possible paths through a program, i.e. the dynamic

behavior of the program. The result of the flow analy-

sis is information about which functions get called, how

many times loops iterate, if there are dependencies be-

tween different if-statements, etc. Since the problem

is computationally intractable in the general case, a

simpler, approximate analysis is normally performed.

This analysis must yield safe path information, i.e. all

feasible paths must always be covered by the approxi-

mation.

The flow information can be calculated manually,

and communicated to the WCET tool by enteringman-
ual annotations into the program [43], or giving the

flow information separately [20, 30, 41, 44].
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Analyze dynamic behaviour of program

� Number of loop iterations

� Recursion depth

� Input dependencies

� Infeasible paths

� Function instances

Get information from

� Static analysis

� Manual annotations

Analysis level:

� Object code

� Source code (may need non-trivial mapping to object code)
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a pipeline that allows some instruction combinations
to be issued on the same clock-cycle, and several com-
plex instructions that address the typical embedded
needs of bit manipulation and compact code. These
features make it an appropriate vehicle for our exper-
iments. Good contacts with NEC Europe also made
information, support, and hardware available.

The compiler is a modified IAR V850/V850E
C/Embedded C++ compiler [27] which emits the ob-
ject code of the program in an accessible format. We
only support C code in our prototype tool.

At present, each program must be contained in a
single source file, since we need access to the whole pro-
gram. In the future, we plan to integrate our tools with
a whole-program compiler developed by the ASTEC
WPO Project [45], which will remove the single-file
limitation.

The simulator is a cycle-accurate model of the
V850E [39], created in our research group using a
homegrown generic framework for modeling pipelined
processors.

At present, we have a prototype implementation of
the low-level analysis: instruction cache analysis and
pipeline analysis for the NEC V850E (based on the
simulator). The prototype tool accepts input in the
form of object-code files from the compiler and files
containing flow information.

The calculation is either performed using IPET or
Path-Based Techniques.

5. Flow Analysis

The set of structurally possible flows for a program,
i.e. those given by the structure of the program, is usu-
ally infinite, since, e.g. loops can be taken an arbitrary
number of times.

The executions are made finite by bounding all loops
with some upper limit on the number of executions
(basic finiteness). Adding even more information, e.g.
about the input data, allows the set of executions to
be narrowed down further, to a set of statically allowed
paths. This is the “optimal” outcome of the flow anal-
ysis. Figure 6 provides an illustration of the different
levels of approximation. Note that the set of actual fea-
sible paths might be smaller than the statically allowed
paths, due to approximations.

The task of the flow analysis is to identify the possi-
ble ways a program can execute. Deciding which of the
possible paths that actually generate the worst execu-
tion time is done in the subsequent calculation phase.

We therefore consider flow information handling to
be divided into three phases:

1. Flow information extraction: Obtaining flow in-
formation by manual annotations or automatic flow
analysis.

2. Flow representation: Representing the results of
the flow analysis in a uniform manner.

3. Conversion for calculation: Converting the con-
trol flow (as represented in the flow representation)
to a format suitable for the WCET calculation.

We believe that an interaction between manual an-
notations and automatic flow analysis is the best choice
for flow information extraction. However, to avoid te-
dious work and errors from the programmer we should
rely on automatic flow analysis as much as possible.

5.1. Representing Flow Information
To help us obtain tight WCET estimates, we have

defined a flow representation formalism that is power-
ful enough to describe the complex flows found in em-
bedded real-time systems (as discussed in Section 2.3).
The representation is flexible enough to capture the
output from a variety of flow analysis methods and
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Quoting [EngblomES01]:

� The set of structurally possible flows for a program, i. e. those
given by the structure of the program, is usually infinite, since,

e. g. loops can be taken an arbitrary number of times

� The executions are made finite by bounding all loops with

some upper limit on the number of executions (basic

finiteness)

� Adding even more information, e. g. about the input data,

allows the set of executions to be narrowed down further, to a

set of statically allowed paths. This is the “optimal” outcome

of the flow analysis.



Flow Analysis

• The set of structurally possible flows for a program, i.e. those given by the 
structure of the program, is usually infinite, since e.g. loops can be taken an 
arbitrary number of times

• The executions are made finite by bounding all loops with some upper limit 
on the number of executions (basic finiteness)

• Adding even more information, e. g. about the input data, allows the set of 
executions to be narrowed down further, to a set of statically allowed paths. 
This is the “optimal” outcome of the flow analysis.



Flow Analysis

• Loop bounds: Easy to find in this example; in general, very difficult to 
determine

• Infeasible paths: Can we exclude a path, based on data analysis?
A-B-C-E-F-G is infeasible—since if x>5, it is not possible that x * 2 < 0.
Well, really? What about integer overflows? Must be sure that these do not 
happen in the example...

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Flow Analysis

const int max = 100;

foo (float x) {

A: for(i = 1; i <= max; i++) {

B: if (x > 5)

C: x = x * 2;

else

D: x = x + 2;

E: if (x < 0)

F: b[i] = a[i];

G: bar (i)

}}

� Loop bounds: Easy to find in this example; in general, very
difficult to determine

� Infeasible paths: Can we exclude a path, based on data
analysis?
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� This example, as well as other parts of this lecture, is based
on a presentation by Jakob Engblom, “Introduction to WCET
Analysis”, Chalmers University of Technology, Gothenburg,
February 27, 2003, http://user.it.uu.se/~jakob/
presentations/esses03-embeddedprogramming.pdf

� In the example, A-B-C-E-F-G is infeasible—since if x > 5, it
is not not possible that x * 2 < 0. Well, really? What about
integer overflows? Must be sure that these do not happen in
the example . . .

Worst-Case Execution Time Analysis

Types of Execution Times
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Low-Level Analysis
Calculation

Low-Level Analysis

actual
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estimates

safe BCET
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Figure 3. Relation between WCET, BCET, and
Possible Program Execution Times

end, we need to perform basic research into particular

methods, design a sound architecture for a tool, and

find a way to come in contact with the development

tools market.

On the research side, we are building a proto-

type system, integrating useful results from other re-

searchers and filling in the missing gaps. We work from

the low-level, basing our models on the hardware view

of the software (i.e. the object code), since this is the

only level at which all effects of the hardware and the

programming environment is visible.

Regarding architecture, we are making the struc-

ture of the WCET tool as modular as possible, both to

ease retargeting to new target hardware and to make it

possible to use the components in other ways than just

WCET analysis. For instance, flow analysis is useful

for compiler optimizations.

On the industrial adaption end, we cooperate with

IAR Systems (Uppsala, Sweden), a vendor of em-

bedded system programming tools. We aim to inte-

grate WCET analysis into their development products.

WCET analysis is most appropriate as a new tool in-

side a familiar environment, not as a stand-alone tool.

We believe that this integration with accepted tools

is the best way to get WCET analysis accepted on

the market, and to make practitioners in the real-time

field actually use execution-time analysis. To be re-

ally useful and to actually realize the potential benefits,

WCET analysis should be employed on a daily basis.

3. WCET Analysis Overview and Re-

lated Work

The goal of WCET analysis is to generate a safe
(i.e. no underestimation) and tight (i.e. small overes-

timation) estimate of the worst-case execution time of

a program (or program fragment). A related prob-

lem is that of finding the Best-Case Execution Time
(BCET) of a program. See Figure 3 for an illustration

of WCET, BCET, tightness, and safe estimates. An-

other execution time estimate is the average execution

time, which is much harder to obtain analytically, since

it requires statistical profiles of input data, instead of

just boundary values, together with methods that can

take advantage of such information.
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Figure 4. Components of WCET Analysis

When performing WCET analysis, it is assumed

that there are no interfering background activities,

such as direct memory access (DMA) or refresh of

DRAM and that the program execution is uninter-

rupted (no preemptions or interrupts). Timing inter-

ference caused by such resource contention, for instance

cache interference between tasks, should be handled by

some subsequent analysis, e.g. schedulability analysis

[3, 29, 46].

3.1. Main Components of WCET Analysis
To generate a WCET estimate, we consider a pro-

gram to be processed through the following main steps:

• The program flow analysis calculates the possible

flows through the program.

• The low-level analysis calculates the execution time

for the instructions (in the detailed discussion below,

low-level analysis is further divided into global low-
level analysis and local low-level analysis).

• The calculation combines the above results into a

WCET estimate.

Figure 4 shows the flow of information between these

components. This structure serves as a conceptual clas-

sification of WCET research.

Program Flow Analysis
The task of program flow analysis is to determine

the possible paths through a program, i.e. the dynamic

behavior of the program. The result of the flow analy-

sis is information about which functions get called, how

many times loops iterate, if there are dependencies be-

tween different if-statements, etc. Since the problem

is computationally intractable in the general case, a

simpler, approximate analysis is normally performed.

This analysis must yield safe path information, i.e. all

feasible paths must always be covered by the approxi-

mation.

The flow information can be calculated manually,

and communicated to the WCET tool by enteringman-
ual annotations into the program [43], or giving the

flow information separately [20, 30, 41, 44].
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� Determine execution time for program parts

� Account for hardware effects

� Work on object code

� Exact analysis generally not possible
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Low-Level Analysis

Global low-level analysis

� Considers execution time effects of machine features that
reach across entire program

� Instruction/data caches, branch predictors, Translation
Lookaside Buffers (TLBs)

Local low-level analysis

� Considers machine features that affect single instruction +
neighbors

� Scalar/superscalar pipelines
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Low-Level Analysis

• Determine execution time for program parts

• Account for hardware effects (pipeline, caches...)

• Work on object code

• Exact analysis generally not possible

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Flow Analysis

const int max = 100;

foo (float x) {

A: for(i = 1; i <= max; i++) {

B: if (x > 5)

C: x = x * 2;

else

D: x = x + 2;

E: if (x < 0)

F: b[i] = a[i];

G: bar (i)

}}

� Loop bounds: Easy to find in this example; in general, very
difficult to determine

� Infeasible paths: Can we exclude a path, based on data
analysis?
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� This example, as well as other parts of this lecture, is based
on a presentation by Jakob Engblom, “Introduction to WCET
Analysis”, Chalmers University of Technology, Gothenburg,
February 27, 2003, http://user.it.uu.se/~jakob/
presentations/esses03-embeddedprogramming.pdf

� In the example, A-B-C-E-F-G is infeasible—since if x > 5, it
is not not possible that x * 2 < 0. Well, really? What about
integer overflows? Must be sure that these do not happen in
the example . . .
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end, we need to perform basic research into particular

methods, design a sound architecture for a tool, and

find a way to come in contact with the development

tools market.

On the research side, we are building a proto-

type system, integrating useful results from other re-

searchers and filling in the missing gaps. We work from

the low-level, basing our models on the hardware view

of the software (i.e. the object code), since this is the

only level at which all effects of the hardware and the

programming environment is visible.

Regarding architecture, we are making the struc-

ture of the WCET tool as modular as possible, both to

ease retargeting to new target hardware and to make it

possible to use the components in other ways than just

WCET analysis. For instance, flow analysis is useful

for compiler optimizations.

On the industrial adaption end, we cooperate with

IAR Systems (Uppsala, Sweden), a vendor of em-

bedded system programming tools. We aim to inte-

grate WCET analysis into their development products.

WCET analysis is most appropriate as a new tool in-

side a familiar environment, not as a stand-alone tool.

We believe that this integration with accepted tools

is the best way to get WCET analysis accepted on

the market, and to make practitioners in the real-time

field actually use execution-time analysis. To be re-

ally useful and to actually realize the potential benefits,

WCET analysis should be employed on a daily basis.

3. WCET Analysis Overview and Re-

lated Work

The goal of WCET analysis is to generate a safe
(i.e. no underestimation) and tight (i.e. small overes-

timation) estimate of the worst-case execution time of

a program (or program fragment). A related prob-

lem is that of finding the Best-Case Execution Time
(BCET) of a program. See Figure 3 for an illustration

of WCET, BCET, tightness, and safe estimates. An-

other execution time estimate is the average execution

time, which is much harder to obtain analytically, since

it requires statistical profiles of input data, instead of

just boundary values, together with methods that can

take advantage of such information.
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When performing WCET analysis, it is assumed

that there are no interfering background activities,

such as direct memory access (DMA) or refresh of

DRAM and that the program execution is uninter-

rupted (no preemptions or interrupts). Timing inter-

ference caused by such resource contention, for instance

cache interference between tasks, should be handled by

some subsequent analysis, e.g. schedulability analysis

[3, 29, 46].

3.1. Main Components of WCET Analysis
To generate a WCET estimate, we consider a pro-

gram to be processed through the following main steps:

• The program flow analysis calculates the possible

flows through the program.

• The low-level analysis calculates the execution time

for the instructions (in the detailed discussion below,

low-level analysis is further divided into global low-
level analysis and local low-level analysis).

• The calculation combines the above results into a

WCET estimate.

Figure 4 shows the flow of information between these

components. This structure serves as a conceptual clas-

sification of WCET research.

Program Flow Analysis
The task of program flow analysis is to determine

the possible paths through a program, i.e. the dynamic

behavior of the program. The result of the flow analy-

sis is information about which functions get called, how

many times loops iterate, if there are dependencies be-

tween different if-statements, etc. Since the problem

is computationally intractable in the general case, a

simpler, approximate analysis is normally performed.

This analysis must yield safe path information, i.e. all

feasible paths must always be covered by the approxi-

mation.

The flow information can be calculated manually,

and communicated to the WCET tool by enteringman-
ual annotations into the program [43], or giving the

flow information separately [20, 30, 41, 44].
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� Determine execution time for program parts

� Account for hardware effects

� Work on object code

� Exact analysis generally not possible
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Low-Level Analysis

Global low-level analysis

� Considers execution time effects of machine features that
reach across entire program

� Instruction/data caches, branch predictors, Translation
Lookaside Buffers (TLBs)

Local low-level analysis

� Considers machine features that affect single instruction +
neighbors

� Scalar/superscalar pipelines
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Low-Level Analysis

• Global Low-Level Analysis

• Considers execution time effects of machine features that reach across 
entire program

• Instruction/data caches, branch predictors, translation lookaside buffers
(TLBs)

• Local Low-Level Analysis

• Considers machine features that affect single instruction & its neighbours

• Scalar/superscalar pipelines



Local Low-Level Analysis - Pipelining

• Pipeline effect of two successive instructions

• Pipeline overlap reduces overall computation time by 

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Local low-level analysis—Pipelining
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Fig. 1. Pipelining of instruction execution
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Fig. 2. Example long timing effect

I1 . . . Im is different from the execution of the nodes I2 . . . Im starting with node I2
(see Section 4.1 for more details).

Figure 2 shows an example of a LTE, where the execution profile of BC is differ-
ent when executed in isolation and when executed as part of the sequence ABC. Note
that we illustrate pipeline execution using pipeline diagrams, similar to the reservation
tables commonly used to describe the behavior of pipelined processors. Time runs hor-
izontally, with each tick of time corresponding to a processor clock cycle. The pipeline
stages are shown on the vertical axis. Instructions progress from upper left to lower
right, and each cycle of execution is shown as a square.

LTEs can in general be both negative and positive, and must be accounted for by
a static WCET analysis method that wants to be safe and tight. Positive timing effects
add execution time to a program, and are critical to consider since otherwise an under-
estimate of the WCET could result. Negative timing effects indicate potential savings in
execution time, and ignoring them only makes the WCET estimate less tight.

Positive LTEs comprise a central problem for WCET analysis, since they make it
necessary to consider effects across more than just adjacent instructions assumption in
order to create a safe analysis. To prove a particular WCET analysis method safe, it is
necessary to address the question of whether all positive LTEs have been accounted for.
A central issue in this paper is therefore to give sufficient conditions for when LTEs are
guaranteed not to be positive.
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� Pipelining effect of two successive instructions

� Pipeline overlap reduces overall computation time by δ = −2
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Worst-Case Execution Time Analysis
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Local low-level analysis—Pipelining
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Fig. 2. Example long timing effect

I1 . . . Im is different from the execution of the nodes I2 . . . Im starting with node I2
(see Section 4.1 for more details).

Figure 2 shows an example of a LTE, where the execution profile of BC is differ-
ent when executed in isolation and when executed as part of the sequence ABC. Note
that we illustrate pipeline execution using pipeline diagrams, similar to the reservation
tables commonly used to describe the behavior of pipelined processors. Time runs hor-
izontally, with each tick of time corresponding to a processor clock cycle. The pipeline
stages are shown on the vertical axis. Instructions progress from upper left to lower
right, and each cycle of execution is shown as a square.

LTEs can in general be both negative and positive, and must be accounted for by
a static WCET analysis method that wants to be safe and tight. Positive timing effects
add execution time to a program, and are critical to consider since otherwise an under-
estimate of the WCET could result. Negative timing effects indicate potential savings in
execution time, and ignoring them only makes the WCET estimate less tight.

Positive LTEs comprise a central problem for WCET analysis, since they make it
necessary to consider effects across more than just adjacent instructions assumption in
order to create a safe analysis. To prove a particular WCET analysis method safe, it is
necessary to address the question of whether all positive LTEs have been accounted for.
A central issue in this paper is therefore to give sufficient conditions for when LTEs are
guaranteed not to be positive.
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� Pipelining effect of three successive instructions
� Reduction of combining three instructions can be larger than

sum of savings when combining them pair-wise!
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Global low-level analysis—Caches

� Instruction caches:
� Predictable from instruction flow

� Data caches:
� No simple way to predict accesses
� Very difficult analysis problem

� Unified caches:
� Must be very pessimistic
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Global low-level analysis—Caches
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Figure 2: Scopes with Attached Flow Facts

The target chip for the present implementation is the NEC

V850E, a typical 32-bit RISC embedded microcontroller ar-

chitecture [6]. The compiler used is an IAR V850/V850E

C/Embedded C++ compiler [32].

Flow analysis is currently performed manually, resulting

in a description of the possible program flow in the scope
graph data structure. The scope graph reflects the structure

of the program and the flow, as described in Section 3.1

below.

The timing graph data structure represents the low-level

view of the program used to build the program timing model.

The data structure and the analysis is presented in more

detail in Section 3.2.

We do not use cache analysis in the current experiments,

since our target hardware does not have a cache, but Fig-

ure 1 still shows where such an analysis module fits in.

3.1 Scope Graph and Flow Facts
The scope graph is a hierarchical representation of the

structure of a program. Each scope corresponds to a certain

repeating or differentiating execution context in the pro-

gram, e.g. loops and function calls, and describes the execu-

tion of the object code of the program within that context.

Each scope is assumed to iterate, and has a header node.

A new iteration starts each time the header node is executed,

and a maximal number of iterations must be given for each

scope. Scopes are allowed to iterate just once, i.e. not loop.

Each scope can carry a set of flow facts. The flow facts

language allows complex program flows to be represented in

a compact and readable manner. In this paper we address

a subset of the flow facts presented in [8].

Each flow fact consists of three parts: the defining scope,
a context specifier, and a constraint expression. The fact is

valid for each entry to the defining scope.

The context specifier describes the iterations for which

the constraint expression is valid. All iterations of a scope

is denoted <>, while a subrange is given as <min..max>.
The constraints are specified as a relation between two

arithmetic expressions involving execution count variables
and constants. An execution count variable, xentity, corre-

sponds to a node or edge in the code of a scope, and rep-

resents the number of times the entity is executed in the

context given in the fact. Note that for a path-based anal-

ysis, constants can only be zero or one.

Figure 2 shows an example of two nested scopes with some

attached flow facts. Each scope has an upper bound, to

guarantee program termination.
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Figure 4: Timing Effect Calculation

The fact inner : <> :xC + xF ≤ 1 gives that the nodes C
and F can never execute on the same iteration of the scope

(an infeasible path).

The fact inner : <1..8> :xC ≤ xG gives that, during the

first eight iterations of an entry to the loop inner, executing
node C implies that G is also executed.

The fact outer : <1..5> : xI = 1 gives that during the

first five iterations of outer, the execution has to pass the

I node, and can thus not enter inner.
Note that flow facts represent program flows implicitly

by constraining the set of possible program flows, in con-

trast to [15] where feasible paths are represented explicitly.
This makes the flow facts usable with calculation techniques

which are not path-based [8].

3.2 Timing Graph and Pipeline Analysis
The timing graph is a flat program flow graph, where the

nodes correspond to basic blocks in the code. Each node and

edge in the timing graph can be decorated with information

about the execution of that piece of code, extracted by some

preceding analysis module. Figure 3 shows an example of

a timing graph with information about instruction cache

behavior (icache hit and icache miss) and memory type

accessed (dmem SRAM). Other types of information can be

used.

The timing graph is generated for the whole program at

once, and the pipeline analysis generates times for all the

nodes and edges in the timing graph in one pass. The

pipeline analysis is described in more detail in [7]. Pieces

of the timing graph are then used in the calculation of the

WCET.

Times for nodes correspond to the execution times of

nodes in isolation, (e.g. tQ in Figure 4), and times for edges,

(e.g. δQR in Figure 4), to the pipeline effect when the two

successive nodes are executed in sequence (usually an over-

lap).

Timing effects for sequences of nodes are calculated by

first running the individual nodes (plus execution informa-

tion), in the simulator, then the sequence, and then compar-

ing the execution times. The process is illustrated in Fig-

ure 4. The timing effect, δQR, for the edge QR is 22−15−11 =

3134

[StappertEE01]

� May split loops to differentiate between first and successive
loop iterations

� Must combine with pipelining effects
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δ = −2



Local Low-Level Analysis - Pipelining

• Pipelining effect of three successive instructions

• Reduction of combining three instructions can be larger than sum of savings 
when combining them pair-wise!

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Local low-level analysis—Pipelining
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Fig. 2. Example long timing effect

I1 . . . Im is different from the execution of the nodes I2 . . . Im starting with node I2
(see Section 4.1 for more details).

Figure 2 shows an example of a LTE, where the execution profile of BC is differ-
ent when executed in isolation and when executed as part of the sequence ABC. Note
that we illustrate pipeline execution using pipeline diagrams, similar to the reservation
tables commonly used to describe the behavior of pipelined processors. Time runs hor-
izontally, with each tick of time corresponding to a processor clock cycle. The pipeline
stages are shown on the vertical axis. Instructions progress from upper left to lower
right, and each cycle of execution is shown as a square.

LTEs can in general be both negative and positive, and must be accounted for by
a static WCET analysis method that wants to be safe and tight. Positive timing effects
add execution time to a program, and are critical to consider since otherwise an under-
estimate of the WCET could result. Negative timing effects indicate potential savings in
execution time, and ignoring them only makes the WCET estimate less tight.

Positive LTEs comprise a central problem for WCET analysis, since they make it
necessary to consider effects across more than just adjacent instructions assumption in
order to create a safe analysis. To prove a particular WCET analysis method safe, it is
necessary to address the question of whether all positive LTEs have been accounted for.
A central issue in this paper is therefore to give sufficient conditions for when LTEs are
guaranteed not to be positive.

4
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� Pipelining effect of two successive instructions

� Pipeline overlap reduces overall computation time by δ = −2
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Local low-level analysis—Pipelining
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Fig. 2. Example long timing effect

I1 . . . Im is different from the execution of the nodes I2 . . . Im starting with node I2
(see Section 4.1 for more details).

Figure 2 shows an example of a LTE, where the execution profile of BC is differ-
ent when executed in isolation and when executed as part of the sequence ABC. Note
that we illustrate pipeline execution using pipeline diagrams, similar to the reservation
tables commonly used to describe the behavior of pipelined processors. Time runs hor-
izontally, with each tick of time corresponding to a processor clock cycle. The pipeline
stages are shown on the vertical axis. Instructions progress from upper left to lower
right, and each cycle of execution is shown as a square.

LTEs can in general be both negative and positive, and must be accounted for by
a static WCET analysis method that wants to be safe and tight. Positive timing effects
add execution time to a program, and are critical to consider since otherwise an under-
estimate of the WCET could result. Negative timing effects indicate potential savings in
execution time, and ignoring them only makes the WCET estimate less tight.

Positive LTEs comprise a central problem for WCET analysis, since they make it
necessary to consider effects across more than just adjacent instructions assumption in
order to create a safe analysis. To prove a particular WCET analysis method safe, it is
necessary to address the question of whether all positive LTEs have been accounted for.
A central issue in this paper is therefore to give sufficient conditions for when LTEs are
guaranteed not to be positive.
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� Pipelining effect of three successive instructions
� Reduction of combining three instructions can be larger than

sum of savings when combining them pair-wise!

Embedded Real-Time Systems SS 2010, Lecture 15 Slide 19

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Global low-level analysis—Caches

� Instruction caches:
� Predictable from instruction flow

� Data caches:
� No simple way to predict accesses
� Very difficult analysis problem

� Unified caches:
� Must be very pessimistic
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Global low-level analysis—Caches
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Figure 2: Scopes with Attached Flow Facts

The target chip for the present implementation is the NEC

V850E, a typical 32-bit RISC embedded microcontroller ar-

chitecture [6]. The compiler used is an IAR V850/V850E

C/Embedded C++ compiler [32].

Flow analysis is currently performed manually, resulting

in a description of the possible program flow in the scope
graph data structure. The scope graph reflects the structure

of the program and the flow, as described in Section 3.1

below.

The timing graph data structure represents the low-level

view of the program used to build the program timing model.

The data structure and the analysis is presented in more

detail in Section 3.2.

We do not use cache analysis in the current experiments,

since our target hardware does not have a cache, but Fig-

ure 1 still shows where such an analysis module fits in.

3.1 Scope Graph and Flow Facts
The scope graph is a hierarchical representation of the

structure of a program. Each scope corresponds to a certain

repeating or differentiating execution context in the pro-

gram, e.g. loops and function calls, and describes the execu-

tion of the object code of the program within that context.

Each scope is assumed to iterate, and has a header node.

A new iteration starts each time the header node is executed,

and a maximal number of iterations must be given for each

scope. Scopes are allowed to iterate just once, i.e. not loop.

Each scope can carry a set of flow facts. The flow facts

language allows complex program flows to be represented in

a compact and readable manner. In this paper we address

a subset of the flow facts presented in [8].

Each flow fact consists of three parts: the defining scope,
a context specifier, and a constraint expression. The fact is

valid for each entry to the defining scope.

The context specifier describes the iterations for which

the constraint expression is valid. All iterations of a scope

is denoted <>, while a subrange is given as <min..max>.
The constraints are specified as a relation between two

arithmetic expressions involving execution count variables
and constants. An execution count variable, xentity, corre-

sponds to a node or edge in the code of a scope, and rep-

resents the number of times the entity is executed in the

context given in the fact. Note that for a path-based anal-

ysis, constants can only be zero or one.

Figure 2 shows an example of two nested scopes with some

attached flow facts. Each scope has an upper bound, to

guarantee program termination.
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Figure 4: Timing Effect Calculation

The fact inner : <> :xC + xF ≤ 1 gives that the nodes C
and F can never execute on the same iteration of the scope

(an infeasible path).

The fact inner : <1..8> :xC ≤ xG gives that, during the

first eight iterations of an entry to the loop inner, executing
node C implies that G is also executed.

The fact outer : <1..5> : xI = 1 gives that during the

first five iterations of outer, the execution has to pass the

I node, and can thus not enter inner.
Note that flow facts represent program flows implicitly

by constraining the set of possible program flows, in con-

trast to [15] where feasible paths are represented explicitly.
This makes the flow facts usable with calculation techniques

which are not path-based [8].

3.2 Timing Graph and Pipeline Analysis
The timing graph is a flat program flow graph, where the

nodes correspond to basic blocks in the code. Each node and

edge in the timing graph can be decorated with information

about the execution of that piece of code, extracted by some

preceding analysis module. Figure 3 shows an example of

a timing graph with information about instruction cache

behavior (icache hit and icache miss) and memory type

accessed (dmem SRAM). Other types of information can be

used.

The timing graph is generated for the whole program at

once, and the pipeline analysis generates times for all the

nodes and edges in the timing graph in one pass. The

pipeline analysis is described in more detail in [7]. Pieces

of the timing graph are then used in the calculation of the

WCET.

Times for nodes correspond to the execution times of

nodes in isolation, (e.g. tQ in Figure 4), and times for edges,

(e.g. δQR in Figure 4), to the pipeline effect when the two

successive nodes are executed in sequence (usually an over-

lap).

Timing effects for sequences of nodes are calculated by

first running the individual nodes (plus execution informa-

tion), in the simulator, then the sequence, and then compar-

ing the execution times. The process is illustrated in Fig-

ure 4. The timing effect, δQR, for the edge QR is 22−15−11 =

3134

[StappertEE01]

� May split loops to differentiate between first and successive
loop iterations

� Must combine with pipelining effects
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Global Low-Level Analysis - Caches

• Instruction Caches

• Predictable from control flow

• Data Caches

• No simple way to predict accesses

• Very difficult analysis problem

• Unified Caches

• Very pessimistic as a result of combining instructions & data



Global Low-Level Analysis - Caches

• May split loops to differentiate between first and successive loop iterations

• Must combine with pipelining effects

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Local low-level analysis—Pipelining
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Fig. 2. Example long timing effect

I1 . . . Im is different from the execution of the nodes I2 . . . Im starting with node I2
(see Section 4.1 for more details).

Figure 2 shows an example of a LTE, where the execution profile of BC is differ-
ent when executed in isolation and when executed as part of the sequence ABC. Note
that we illustrate pipeline execution using pipeline diagrams, similar to the reservation
tables commonly used to describe the behavior of pipelined processors. Time runs hor-
izontally, with each tick of time corresponding to a processor clock cycle. The pipeline
stages are shown on the vertical axis. Instructions progress from upper left to lower
right, and each cycle of execution is shown as a square.

LTEs can in general be both negative and positive, and must be accounted for by
a static WCET analysis method that wants to be safe and tight. Positive timing effects
add execution time to a program, and are critical to consider since otherwise an under-
estimate of the WCET could result. Negative timing effects indicate potential savings in
execution time, and ignoring them only makes the WCET estimate less tight.

Positive LTEs comprise a central problem for WCET analysis, since they make it
necessary to consider effects across more than just adjacent instructions assumption in
order to create a safe analysis. To prove a particular WCET analysis method safe, it is
necessary to address the question of whether all positive LTEs have been accounted for.
A central issue in this paper is therefore to give sufficient conditions for when LTEs are
guaranteed not to be positive.
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� Pipelining effect of two successive instructions

� Pipeline overlap reduces overall computation time by δ = −2
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Local low-level analysis—Pipelining
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Fig. 2. Example long timing effect

I1 . . . Im is different from the execution of the nodes I2 . . . Im starting with node I2
(see Section 4.1 for more details).

Figure 2 shows an example of a LTE, where the execution profile of BC is differ-
ent when executed in isolation and when executed as part of the sequence ABC. Note
that we illustrate pipeline execution using pipeline diagrams, similar to the reservation
tables commonly used to describe the behavior of pipelined processors. Time runs hor-
izontally, with each tick of time corresponding to a processor clock cycle. The pipeline
stages are shown on the vertical axis. Instructions progress from upper left to lower
right, and each cycle of execution is shown as a square.

LTEs can in general be both negative and positive, and must be accounted for by
a static WCET analysis method that wants to be safe and tight. Positive timing effects
add execution time to a program, and are critical to consider since otherwise an under-
estimate of the WCET could result. Negative timing effects indicate potential savings in
execution time, and ignoring them only makes the WCET estimate less tight.

Positive LTEs comprise a central problem for WCET analysis, since they make it
necessary to consider effects across more than just adjacent instructions assumption in
order to create a safe analysis. To prove a particular WCET analysis method safe, it is
necessary to address the question of whether all positive LTEs have been accounted for.
A central issue in this paper is therefore to give sufficient conditions for when LTEs are
guaranteed not to be positive.

4

[EngblomJ02]

� Pipelining effect of three successive instructions
� Reduction of combining three instructions can be larger than

sum of savings when combining them pair-wise!
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Global low-level analysis—Caches

� Instruction caches:
� Predictable from instruction flow

� Data caches:
� No simple way to predict accesses
� Very difficult analysis problem

� Unified caches:
� Must be very pessimistic
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Global low-level analysis—Caches
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Figure 2: Scopes with Attached Flow Facts

The target chip for the present implementation is the NEC

V850E, a typical 32-bit RISC embedded microcontroller ar-

chitecture [6]. The compiler used is an IAR V850/V850E

C/Embedded C++ compiler [32].

Flow analysis is currently performed manually, resulting

in a description of the possible program flow in the scope
graph data structure. The scope graph reflects the structure

of the program and the flow, as described in Section 3.1

below.

The timing graph data structure represents the low-level

view of the program used to build the program timing model.

The data structure and the analysis is presented in more

detail in Section 3.2.

We do not use cache analysis in the current experiments,

since our target hardware does not have a cache, but Fig-

ure 1 still shows where such an analysis module fits in.

3.1 Scope Graph and Flow Facts
The scope graph is a hierarchical representation of the

structure of a program. Each scope corresponds to a certain

repeating or differentiating execution context in the pro-

gram, e.g. loops and function calls, and describes the execu-

tion of the object code of the program within that context.

Each scope is assumed to iterate, and has a header node.

A new iteration starts each time the header node is executed,

and a maximal number of iterations must be given for each

scope. Scopes are allowed to iterate just once, i.e. not loop.

Each scope can carry a set of flow facts. The flow facts

language allows complex program flows to be represented in

a compact and readable manner. In this paper we address

a subset of the flow facts presented in [8].

Each flow fact consists of three parts: the defining scope,
a context specifier, and a constraint expression. The fact is

valid for each entry to the defining scope.

The context specifier describes the iterations for which

the constraint expression is valid. All iterations of a scope

is denoted <>, while a subrange is given as <min..max>.
The constraints are specified as a relation between two

arithmetic expressions involving execution count variables
and constants. An execution count variable, xentity, corre-

sponds to a node or edge in the code of a scope, and rep-

resents the number of times the entity is executed in the

context given in the fact. Note that for a path-based anal-

ysis, constants can only be zero or one.

Figure 2 shows an example of two nested scopes with some

attached flow facts. Each scope has an upper bound, to

guarantee program termination.
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Figure 4: Timing Effect Calculation

The fact inner : <> :xC + xF ≤ 1 gives that the nodes C
and F can never execute on the same iteration of the scope

(an infeasible path).

The fact inner : <1..8> :xC ≤ xG gives that, during the

first eight iterations of an entry to the loop inner, executing
node C implies that G is also executed.

The fact outer : <1..5> : xI = 1 gives that during the

first five iterations of outer, the execution has to pass the

I node, and can thus not enter inner.
Note that flow facts represent program flows implicitly

by constraining the set of possible program flows, in con-

trast to [15] where feasible paths are represented explicitly.
This makes the flow facts usable with calculation techniques

which are not path-based [8].

3.2 Timing Graph and Pipeline Analysis
The timing graph is a flat program flow graph, where the

nodes correspond to basic blocks in the code. Each node and

edge in the timing graph can be decorated with information

about the execution of that piece of code, extracted by some

preceding analysis module. Figure 3 shows an example of

a timing graph with information about instruction cache

behavior (icache hit and icache miss) and memory type

accessed (dmem SRAM). Other types of information can be

used.

The timing graph is generated for the whole program at

once, and the pipeline analysis generates times for all the

nodes and edges in the timing graph in one pass. The

pipeline analysis is described in more detail in [7]. Pieces

of the timing graph are then used in the calculation of the

WCET.

Times for nodes correspond to the execution times of

nodes in isolation, (e.g. tQ in Figure 4), and times for edges,

(e.g. δQR in Figure 4), to the pipeline effect when the two

successive nodes are executed in sequence (usually an over-

lap).

Timing effects for sequences of nodes are calculated by

first running the individual nodes (plus execution informa-

tion), in the simulator, then the sequence, and then compar-

ing the execution times. The process is illustrated in Fig-

ure 4. The timing effect, δQR, for the edge QR is 22−15−11 =

3134

[StappertEE01]

� May split loops to differentiate between first and successive
loop iterations

� Must combine with pipelining effects

Embedded Real-Time Systems SS 2010, Lecture 15 Slide 21



WCET Calculation

• Task: Find the path that results in the longest execution time

• Several approaches in use

• Properties of approaches

• Program flow allowed

• Object code structure (optimisations?)

• Pipeline effect modelling

• Solution complexity

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Flow Analysis

const int max = 100;

foo (float x) {

A: for(i = 1; i <= max; i++) {

B: if (x > 5)

C: x = x * 2;

else

D: x = x + 2;

E: if (x < 0)

F: b[i] = a[i];

G: bar (i)

}}

� Loop bounds: Easy to find in this example; in general, very
difficult to determine

� Infeasible paths: Can we exclude a path, based on data
analysis?
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� This example, as well as other parts of this lecture, is based
on a presentation by Jakob Engblom, “Introduction to WCET
Analysis”, Chalmers University of Technology, Gothenburg,
February 27, 2003, http://user.it.uu.se/~jakob/
presentations/esses03-embeddedprogramming.pdf

� In the example, A-B-C-E-F-G is infeasible—since if x > 5, it
is not not possible that x * 2 < 0. Well, really? What about
integer overflows? Must be sure that these do not happen in
the example . . .

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Low-Level Analysis

actual
BCET

actual
WCET

possible execution times safe WCET
estimates

safe BCET
estimates

tighter tighter
time0

Figure 3. Relation between WCET, BCET, and
Possible Program Execution Times

end, we need to perform basic research into particular

methods, design a sound architecture for a tool, and

find a way to come in contact with the development

tools market.

On the research side, we are building a proto-

type system, integrating useful results from other re-

searchers and filling in the missing gaps. We work from

the low-level, basing our models on the hardware view

of the software (i.e. the object code), since this is the

only level at which all effects of the hardware and the

programming environment is visible.

Regarding architecture, we are making the struc-

ture of the WCET tool as modular as possible, both to

ease retargeting to new target hardware and to make it

possible to use the components in other ways than just

WCET analysis. For instance, flow analysis is useful

for compiler optimizations.

On the industrial adaption end, we cooperate with

IAR Systems (Uppsala, Sweden), a vendor of em-

bedded system programming tools. We aim to inte-

grate WCET analysis into their development products.

WCET analysis is most appropriate as a new tool in-

side a familiar environment, not as a stand-alone tool.

We believe that this integration with accepted tools

is the best way to get WCET analysis accepted on

the market, and to make practitioners in the real-time

field actually use execution-time analysis. To be re-

ally useful and to actually realize the potential benefits,

WCET analysis should be employed on a daily basis.

3. WCET Analysis Overview and Re-

lated Work

The goal of WCET analysis is to generate a safe
(i.e. no underestimation) and tight (i.e. small overes-

timation) estimate of the worst-case execution time of

a program (or program fragment). A related prob-

lem is that of finding the Best-Case Execution Time
(BCET) of a program. See Figure 3 for an illustration

of WCET, BCET, tightness, and safe estimates. An-

other execution time estimate is the average execution

time, which is much harder to obtain analytically, since

it requires statistical profiles of input data, instead of

just boundary values, together with methods that can

take advantage of such information.
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Figure 4. Components of WCET Analysis

When performing WCET analysis, it is assumed

that there are no interfering background activities,

such as direct memory access (DMA) or refresh of

DRAM and that the program execution is uninter-

rupted (no preemptions or interrupts). Timing inter-

ference caused by such resource contention, for instance

cache interference between tasks, should be handled by

some subsequent analysis, e.g. schedulability analysis

[3, 29, 46].

3.1. Main Components of WCET Analysis
To generate a WCET estimate, we consider a pro-

gram to be processed through the following main steps:

• The program flow analysis calculates the possible

flows through the program.

• The low-level analysis calculates the execution time

for the instructions (in the detailed discussion below,

low-level analysis is further divided into global low-
level analysis and local low-level analysis).

• The calculation combines the above results into a

WCET estimate.

Figure 4 shows the flow of information between these

components. This structure serves as a conceptual clas-

sification of WCET research.

Program Flow Analysis
The task of program flow analysis is to determine

the possible paths through a program, i.e. the dynamic

behavior of the program. The result of the flow analy-

sis is information about which functions get called, how

many times loops iterate, if there are dependencies be-

tween different if-statements, etc. Since the problem

is computationally intractable in the general case, a

simpler, approximate analysis is normally performed.

This analysis must yield safe path information, i.e. all

feasible paths must always be covered by the approxi-

mation.

The flow information can be calculated manually,

and communicated to the WCET tool by enteringman-
ual annotations into the program [43], or giving the

flow information separately [20, 30, 41, 44].

4

[EngblomES01]

� Determine execution time for program parts

� Account for hardware effects

� Work on object code

� Exact analysis generally not possible
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Low-Level Analysis

Global low-level analysis

� Considers execution time effects of machine features that
reach across entire program

� Instruction/data caches, branch predictors, Translation
Lookaside Buffers (TLBs)

Local low-level analysis

� Considers machine features that affect single instruction +
neighbors

� Scalar/superscalar pipelines
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WCET Calculation

• Path-based

• Constraint-based
Implicit Path Enumeration Technique - IPET

• Structure-based



WCET Calculation

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Calculation
actual
BCET

actual
WCET

possible execution times safe WCET
estimates

safe BCET
estimates

tighter tighter
time0

Figure 3. Relation between WCET, BCET, and
Possible Program Execution Times

end, we need to perform basic research into particular

methods, design a sound architecture for a tool, and

find a way to come in contact with the development

tools market.

On the research side, we are building a proto-

type system, integrating useful results from other re-

searchers and filling in the missing gaps. We work from

the low-level, basing our models on the hardware view

of the software (i.e. the object code), since this is the

only level at which all effects of the hardware and the

programming environment is visible.

Regarding architecture, we are making the struc-

ture of the WCET tool as modular as possible, both to

ease retargeting to new target hardware and to make it

possible to use the components in other ways than just

WCET analysis. For instance, flow analysis is useful

for compiler optimizations.

On the industrial adaption end, we cooperate with

IAR Systems (Uppsala, Sweden), a vendor of em-

bedded system programming tools. We aim to inte-

grate WCET analysis into their development products.

WCET analysis is most appropriate as a new tool in-

side a familiar environment, not as a stand-alone tool.

We believe that this integration with accepted tools

is the best way to get WCET analysis accepted on

the market, and to make practitioners in the real-time

field actually use execution-time analysis. To be re-

ally useful and to actually realize the potential benefits,

WCET analysis should be employed on a daily basis.

3. WCET Analysis Overview and Re-

lated Work

The goal of WCET analysis is to generate a safe
(i.e. no underestimation) and tight (i.e. small overes-

timation) estimate of the worst-case execution time of

a program (or program fragment). A related prob-

lem is that of finding the Best-Case Execution Time
(BCET) of a program. See Figure 3 for an illustration

of WCET, BCET, tightness, and safe estimates. An-

other execution time estimate is the average execution

time, which is much harder to obtain analytically, since

it requires statistical profiles of input data, instead of

just boundary values, together with methods that can

take advantage of such information.
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Figure 4. Components of WCET Analysis

When performing WCET analysis, it is assumed

that there are no interfering background activities,

such as direct memory access (DMA) or refresh of

DRAM and that the program execution is uninter-

rupted (no preemptions or interrupts). Timing inter-

ference caused by such resource contention, for instance

cache interference between tasks, should be handled by

some subsequent analysis, e.g. schedulability analysis

[3, 29, 46].

3.1. Main Components of WCET Analysis
To generate a WCET estimate, we consider a pro-

gram to be processed through the following main steps:

• The program flow analysis calculates the possible

flows through the program.

• The low-level analysis calculates the execution time

for the instructions (in the detailed discussion below,

low-level analysis is further divided into global low-
level analysis and local low-level analysis).

• The calculation combines the above results into a

WCET estimate.

Figure 4 shows the flow of information between these

components. This structure serves as a conceptual clas-

sification of WCET research.

Program Flow Analysis
The task of program flow analysis is to determine

the possible paths through a program, i.e. the dynamic

behavior of the program. The result of the flow analy-

sis is information about which functions get called, how

many times loops iterate, if there are dependencies be-

tween different if-statements, etc. Since the problem

is computationally intractable in the general case, a

simpler, approximate analysis is normally performed.

This analysis must yield safe path information, i.e. all

feasible paths must always be covered by the approxi-

mation.

The flow information can be calculated manually,

and communicated to the WCET tool by enteringman-
ual annotations into the program [43], or giving the

flow information separately [20, 30, 41, 44].

4

[EngblomES01]

� Find the path through that gives the longest execution time

� Several approaches used

� Properties of approaches

� Program flow allowed

� Object code structure (optimizations)

� Pipeline effect modeling

� Solution complexity
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Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Calculation

� Path-based

Florida, Paderborn, Göteborg

� Constraint-based

(Implicit Path Enumeration Techique—IPET)

Saarbrücken, Uppsala

� Structure-based

Rennes, York, Wien, Seoul
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The Worst-Case Execution-Time Problem • 36:15

Fig. 5. Bound calculation.

Figure 5, taken from Ermedahl [2003], shows the different methods. Fig-
ure 5a shows an example CFG with timing on the nodes and a loop-bound flow
fact.

In structure-based bound calculation as used in HEPTANE (cf. Colin and Puaut
[2000] and Section 6.6), an upper bound is calculated in a bottom-up traversal
of the syntax tree of the task combining bounds computed for constituents of
statements according to combination rules for that type of statement [Colin and
Bernat 2002; Colin and Puaut 2000; Lim et al. 1995]. Figure 5d illustrates how
a structure-based method would proceed according to the task syntax tree and
given combination rules. Collections of nodes are collapsed into single nodes,
simultaneously deriving a timing for the new node. As stated in Section 2.1.2,
precision can only be obtained if the same code snippet is considered in a num-
ber of different flow contexts, since the execution times in different flow contexts
can vary widely. Taking flow contexts into account requires transformations of
the syntax tree to reflect the different contexts. Most of the profitable transfor-
mations, e.g., loop unrolling, are easily expressed on the syntax tree [Colin and
Bernat 2002].

Some problems of the structure-based approach are that not every control
flow can be expressed through the syntax tree, that the approach assumes a
very straightforward correspondence between the structures of the source and

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

[Wilhelm+08]

Extracted from [Wilhelm+08]:

In path-based bound calculation, the upper bound for a task is determined by
computing bounds for different paths in the task, searching for the overall path with
the longest execution time. The defining feature is that possible execution paths are
represented explicitly. The path-based approach is natural within a single loop
iteration, but has problems with flow information extending across loopnesting levels.
The number of paths is exponential in the number of branch points, possibly requiring
heuristic search methods.
In IPET (implicit path enumeration), program flow and basic-block execution time
bounds are combined into sets of arithmetic constraints. Each basic block and program
flow edge in the task is given a time coefficient (tentity ), expressing the upper bound of
the contribution of that entity to the total execution time every time it is executed and
a count variable (xentity ), corresponding to the number of times the entity is executed.
In structure-based bound calculation an upper bound is calculated in a bottom-up
traversal of the syntax tree of the task combining bounds computed for constituents of
statements according to combination rules for that type of statement. Some problems
of the structure-based approach are that not every control flow can be expressed
through the syntax tree, that the approach assumes a very straightforward
correspondence between the structures of the source and the target program not easily
admitting code optimizations, and that it is, in general, not possible to add additional
flow information, as can be done in the IPET case.



Path-Based Bound Calculation

• Upper bound for a task is determined by computing bounds for different 
paths in the task, searching for the overall path with the longest execution 
time. 

• Defining feature is that possible execution paths are represented explicitly.

• Natural within a single loop iteration, but problems with flow information 
extending across loop nesting levels.

• Number of paths is exponential in the number of branch points.

• Possibly requiring heuristic search methods.



Implicit Path Enumeration

• Program flow and basic block execution time bounds are combined into sets 
of arithmetic constraints.

• Each basic block and program flow edge in the task is given a time 
coefficient, expressing the upper bound of the contribution of that entity to 
the total execution time every time it is executed.



Structure-based Bound Calculation

• Upper bound is calculated in a bottom-up traversal of the syntax tree of the 
task combining bounds computed for constituents of statements according 
to combination rules for that type of statement.

• Not every control flow can be expressed through the syntax tree

• Assumes straight-forward correspondence between source structures and 
the target program

• Not easily admitting code optimisations

• In general, not possible to add additional flow information (as in IPET).



Summary

• Motivation

• Worst-Case Execution Time Analysis

• Types of Execution Times

• Measuring vs. Analysing

• Flow Analysis 

• Low-Level Analysis

• WCET Calculation



Preview

• Real-Time Operating Systems

• MQX


