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Overview

• Introduction

• Address generating units

• Single offset assignment problem

• Instruction level parallelism

•  Going beyond list scheduling

• Vectorisation for multiimedia instructions

• Avoiding branch delay

• Using predicated instructions

• Function inlining

• Trade off betweern code size and performance

• Summary
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Introduction

• Previously looked at large scale mapping issues

• Look at smaller scale intra-processor utilisation

• Traditionally embedded processors programmed in assembler

• As programmer cost rises, more emphasis on tools

• Compilers are a key component in exploiting embedded sysytems

• Different challenges and opportunities compared to general purpose

• Architectures more complex and pre-specialised

• Code size energy as well as speed

• More work to do as less hardware support

• Compile time can take longer as amortised over number of uses
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Address generation unit in parallel

Example: Data path ADSP210x

Code : yi[j] = yi-1[j] + x[j-i]*a[i]  forall i, j

- Parallelism 
- Dedicated
   registers
- No matching
  compiler ⇒
  inefficient
  code
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Compiling for AGus

• In effect does restricted register indirect addressing in parallel

LD r31, Mem[r1]

ADD r1, r1, 1

LD r31, Mem[r1]

• Is replaced by

LD r31, Mem[a1]; (a1++)

• Where the a1++ may be explicit or  implicit

• Very useful for loops and array refs 

Eliminates an instruction per load - code size

However a challenge on how to utilise agus
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Handling array references in loops 

Example:
for (i=2; i<=N; i++)
{ .. B[i+1]     /*A2++   */           
  .. B[i]         /*A1--    */ 
  .. B[i+2]     /*A2++  */ 
  .. B[i-1]      /*A1++  */ 
  .. B[i+3]     /*A2--    */ 
  .. B[i]  }      /*A1++  */ 

Offsets
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Reference: A. Basu, R. Leupers, P. Marwedel: 
Array Index Allocation under Register Constraints, 
Int. Conf. on VLSI Design, Goa/India, 1999

Cost for crossing loop 
boundaries considered.
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Generic address generation unit (AGU) model

Exploitation of parallel address computations

Parameters:
k  = # address registers
m = # modify registers

Cost metric for AGU
operations:

+/-

Memory

1

Instruction Field

Modify
Register

File

Address
Register

File

Operation                   cost
immediate AR load        1
immediate AR modify    1
auto-increment/              0
decrement
AR += MR                        0
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Offset assignment problem (OA)
- Effect of optimised memory layout -

Let's assume that we can modify the memory layout
Foffset assignment problem.

(k,m,r)-OA is the problem of generating a memory layout 
which minimizes the cost of addressing variables, with
Fk: number of address registers
Fm: number of modify registers
Fr: the offset range

The case (1,0,1) is called simple offset assignment (SOA),
the case (k,0,1) is called general offset assignment (GOA).
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Variables in a basic block: Access sequence:
V = {a, b, c, d} S = (b, d, a, c, d, c)

Load AR,1 ;b
AR += 2 ;d
AR -= 3  ;a
AR += 2 ;c
AR ++  ;d
AR --  ;c

a
b
c
d

0
1
2
3

cost: 4

SOA example
- Effect of optimised memory layout -
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Variables in a basic block: Access sequence:
V = {a, b, c, d} S = (b, d, a, c, d, c)

Load AR,1 ;b
AR += 2 ;d
AR -= 3  ;a
AR += 2 ;c
AR ++  ;d
AR --  ;c

a
b
c
d

0
1
2
3

cost: 4

SOA example
- Effect of optimised memory layout -

cost: 2

Load AR,0 ;b
AR ++  ;d
AR +=2  ;a
AR --  ;c
AR --  ;d
AR ++  ;c

b
d
c
a

0

1
2
3

Thursday, 13 March 2014



 -   -

SOA example: Access sequence, access graph and 
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

Thursday, 13 March 2014



 -   -

SOA example: Access sequence, access graph and 
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

a b

c d

11
1

2

access graph
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SOA example: Access sequence, access graph and 
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

a b

c d
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max. weighted Hamilton
path covering (MWHC)

2
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SOA example: Access sequence, access graph and 
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]
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memory layout
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SOA example: Access sequence, access graph and 
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

a b

c d

11
1

2

access graph

a b

c d

11

maximum weighted path=
max. weighted Hamilton
path covering (MWHC)

2

b
d
c
a

0
1
2
3

memory layout

SOA used as a building block for more complex situations
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SOA example: Access sequence, access graph and 
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

a b

c d

11
1

2

access graph

a b

c d

11

maximum weighted path=
max. weighted Hamilton
path covering (MWHC)

2

b
d
c
a

0
1
2
3

memory layout

SOA used as a building block for more complex situations

significant interest in good SOA algorithms
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Naïve SOA

b
b
d
a
c

0
1
2
3

memory layout

Nodes are added in the order
in which they are used in the program.

Example:
Access sequence:  S   =    (b, d, a,  c, d, c) 

1 0 0 10 1
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Naïve SOA
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Nodes are added in the order
in which they are used in the program.

Example:
Access sequence:  S   =    (b, d, a,  c, d, c) 

1 0 0 10 1
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Naïve SOA

b d a
b
d
a
c

0
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3

memory layout

Nodes are added in the order
in which they are used in the program.

Example:
Access sequence:  S   =    (b, d, a,  c, d, c) 

1 0 0 10 1
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Naïve SOA

b d ca
b
d
a
c

0
1
2
3

memory layout

Nodes are added in the order
in which they are used in the program.

Example:
Access sequence:  S   =    (b, d, a,  c, d, c) 

1 0 0 10 1
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Naïve SOA

b d ca
0        1         2         3

b
d
a
c

0
1
2
3

memory layout

Nodes are added in the order
in which they are used in the program.

Example:
Access sequence:  S   =    (b, d, a,  c, d, c) 

1 0 0 10 1
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle 
in G’ and does not cause any node in G’ to have a degree > 2 then add this 
node to E’ otherwise discard e. 
4. Goto 3 as long as not all edges from G have been selected
   and as long as G’  has less than the maximum number of edges (|V|-1).
   Example: Access sequence: S=(b, d, a, c, d, c) 

1 0 0 01 0

a b

c d

11
1

2

G

Implicit edges of 
weight 0 for all 
unconnected 
nodes.
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Liao’s algorithm
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Liao’s algorithm
on a more complex graph
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Liao’s algorithm
on a more complex graph
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Liao’s algorithm
on a more complex graph
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Liao’s algorithm
on a more complex graph
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Liao’s algorithm
on a more complex graph
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Liao’s algorithm
on a more complex graph
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Exploitation of instruction level parallelism (ILP)

MR
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D
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yi-1[j]

x[j-i]

x[j-i]*a[i]

a[i]

Address 
generation 
unit (AGU)

Address- 
registers
A0, A1, A2 ..
i+1, j-i+1

a
x

Several transfers in the same cycle:
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Exploiting ILP

• Normally looked at as a way if improving performance

• However on vliw and dsp architectures 

• Also helps reduce  code size

• If the parallel units are not doing anything

• then have to fill with a nop
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1: MR := MR+(MX*MY);
2: MX:=D[A1];
3: MY:=P[A2];
4: A1- -;
5: A2++;
6: D[0]:= MR;
.....

1´: MR := MR+(MX*MY), MX:=D[A1],
     MY:=P[A2], A1- -, A2++;
2´: D[0]:= MR;

•Modelling of possible parallelism using n-ary 
compatibility relation, e.g. ~(1,2,3,4,5)

•Generation of integer programming (IP)- model
(max. 50 statements/model)

•Using standard-IP-solver to solve equations

Exploitation of instruction level parallelism (ILP)

Normally tackled using dependence  graph and list scheduling
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Exploitation of instruction level parallelism (ILP)

Code size reduction [%]

0 10 20 30 40

bassboost
dct

equalize
fir12

lattice2
pidctrl

adaptive2
adaptive1

[Leupers, EuroDAC96]

Compaction times: 2 .. 35 sec

Results obtained through integer programming:
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Exploitation of Multimedia Instructions

FOR i:=0 TO n DO
 a[i] = b[i] + c[i] 

FOR i:=0 STEP 4 TO n DO
 a[i  ]=b[i  ]+c[i ];
 a[i+1]=b[i+1]+c[i+1];
 a[i+2]=b[i+2]+c[i+2];
 a[i+3]=b[i+3]+c[i+3]; 

+

MMAdd (4 x 8/16 bit)

+

..

.

a

b

c

A form of limited vectorisation. Normally performed in code 
generation stage rather then at restructure stage 

Thursday, 13 March 2014



 -   -

Improvements for M3 DSP due to vectorization
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Avoiding branch delay using predication

Large branch delay 
penalty:

Condi-
tional 
jump

15 (TriMedia) bzw. 
40 (C62xx) delay 
slots

Avoiding this penalty:
predicated execution:
[c] instruction
c=true: instruction executed
c=false: effectively NOOP

Realisation of if-statements
with conditional jumps or with 
predicated execution:

if (c)
{ a = x + y;
  b = x + z;
}
else
{ a = x - y;
  b = x - z;
}

Cond. instructions:

      [c]  ADD x,y,a
|| [c]  ADD x,z,b
|| [!c] SUB  x,y,a
|| [!c] SUB  x,z,b

1 cycle
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Cost of implementation methods for IF-Statements

Sourcecode: if (c1) {t1; if (c2) t2}
No precondition (no enclosing IF or enclosing IFs implemented with 
cond. jumps)

Additional computations to compute effective condition c 

Precondition (enclosing IF not implemented with conditional jumps)

1. Conditional jump:
    BNE c1, L; 
    t1;
    L: ...

3. Conditional jump :
    [c1] c:=c2
    [~c1] c:=0
    BNE c, L;
    t2;
    L: ...

2. Conditional 
Instruction:
    [c1] t1

4. Conditional 
Instruction :
    [c1] c:=c2
    [~c1] c:=0
    [c] t2
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Optimization for nested IF-statements

if 2

if 1

- Selection of fastest 
implementation for if-1 requires 
knowledge of how fast if-2 can 
be implemented.
- Execution time of if-2 depends 
on setup code, and, hence, also 
on how if 1 is implemented
- cyclic dependency!

Goal: compute fastest implementation for all IF-statements
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Dynamic programming algorithm (phase 1)

For each if-statement compute 4 cost values: 
  T1 : cond. jump, no precondition
  T2 : cond. instructions, no precondition
  T3 : cond. jump, with precondition
  T4:  cond. instructions, with precondition 

T1   T2
T3   T4   if

  if 

if ifT1   T2
T3   T4 bo

tto
m

-u
p
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Dynamic programming (phase 2)

  if

  if 

if if

No precondition for top-level IF-statement.
Hence, comparison T1 < T2 suffices.

T1 < T2:
  cond. branch faster, 
  no precondition for
  nested IF-statements
T1 > T2:
  cond. instructions 
  faster, precondition
  for nested IF-state-
  ments

to
p-

do
w

n

T1   T2

T1   T2
T3   T4

<
>

comparison
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Results: TI C62xx

Runtimes (max) for 10 control-dominated examples

Average gain: 12%

Example Conditional 
jumps

Conditional 
instructions

Dynamic 
program.

Min (col. 
2-5)

TI C 
compiler

1 21 11 11 11 15
2 12 13 13 12 13
3 26 21 22 21 27
4 9 12 12 9 10
5 26 30 24 24 21
6 32 23 23 23 30
7 57 173 49 49 51
8 39 244 30 30 41
9 28 27 27 27 29
10 27 30 30 27 28

Thursday, 13 March 2014



 -   -

Function inlining:
advantages and limitations

 

Function sq(c:integer) 
 return:integer;
begin
 return c*c
end;
.... 
a=sq(b);
....

....
LD R1,b;
MUL R1,R1,R1;
ST R1,a
....

push PC;
push b;
BRA sq;
 pull R1;
 mul R1,R1,R1;
 pull R2;
 push R1;
 BRA (R2)+1;
pull R1;
ST R1,a;

Advantage: low calling 
overhead

Limitations:
§  Not all functions are 

 candidates.
§  Code size explosion.
§  Requires manual

 identification using
 ‘inline’ qualifier.

Inlining

branching Goal:
§Controlled code size
§Automatic identification 

of suitable functions.
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Results for GSM speech and channel
encoder: #calls, #cycles (TI ‘C62xx)
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100
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33% speedup for 25% increase in code size.
# of cycles not a monotonically decreasing function of the code size!

L [%]
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Summary

• Address generating units

• Single offset assignment problem

• Instruction level parallelism

•  Going beyond list scheduling

• Vectorisation for multimedia instructions

• Avoiding branch delay

• Using predicated instructions

• Function inlining

• Trade off between code size and performance
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