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Overview

® Introduction
® Address generating units
® Single offset assignment problem
® Instruction level parallelism
® (Going beyond list scheduling
® \/ectorisation for multiimedia instructions
® Avoiding branch delay
® Using predicated instructions
® Function inlining
® Trade off betweern code size and performance

® Summary
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INntroduction

® Previously looked at large scale mapping issues
® | ook at smaller scale intra-processor utilisation
® Traditionally embedded processors programmed in assembler
® As programmer cost rises, more emphasis on tools
e Compilers are a key component in exploiting embedded sysytems
® Different challenges and opportunities compared to general purpose

® Architectures more complex and pre-specialised
® Code size energy as well as speed
® More work to do as less hardware support

e Compile time can take longer as amortised over number of uses
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Address generation unit in parallel

Code : y;[j1 = vi4[i] + x[j-i]*a[i] foralli,

Example: Data path ADSP210x

P | a
D [X
x[j-i] ali]
= —— [ - Parallel
Address- AF J— L N arq elism
registers |- ?eegilsctaetresd
A1, A2 ..

ff1 : j:i-1 xlj\/xlj xl/\/xlj | - No matching
Address —[F - X[j-l] a[l] inefficient
generation [AR] : code
unit (AGU) vR ] Vi.4[]]
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Compiling for AGus

e In effect does restricted register indirect addressing in parallel

LD r31, Mem([r1]
ADD r1,r1, 1
| D r31, Mem|r1]

* |s replaced by

| D r31, Meml|al]; (@1++)

® \Where the a1++ may be explicit or implicit
® \/ery useful for loops and array refs
Eliminates an instruction per load - code size

However a challenge on how to utilise agus
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Handling array references in loops

Example: 1 P <
for (i=2; i<=N; i++) S LR

(B[] rA2++ || /) X\

Bl XA *71/ -\ X
. EHLZ] ﬁ*ﬁgﬁ *l/ﬂ/j///éj \

eps

|

LBi-1] A1+ YL B " \ \ A2 \ X\

. B[i+3] /*A2-- */
LB[i] Y A1+ %

Control
[@))
|

Cost for crossing loop 7 I I N S
boundaries considered.

Reference: A. Basu, R. Leupers, P. Marwedel: Vg S j

Array Index Allocation under Register Constraints, 3 5 1 0 1
Int. Conf. on VLSI Design, Goa/lndia, 1999 - - -

Offsets
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Exploitation of parallel address computations

Generic address generation unit (AGU) model
Instruction Field

L B
/|
Add _ress
Rngillzter \ ¥ /

Modify
Register
File

Parameters:

K = # address registers
m = # modify registers

Memory

Cost metric for AGU
operations:

Operation cost
immediate AR load 1
immediate AR modify 1
auto-increment/ 0
decrement

AR += MR 0
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Offset assignment problem (OA)
- Effect of optimised memory layout -

Let's assume that we can modify the memory layout
offset assignment problem.

(k,m,r)-OA is the problem of generating a memory layout
which minimizes the cost of addressing variables, with

k. number of address registers

m:. number of modify registers

r. the offset range
The case (1,0,1) is called simple offset assignment (SOA),
the case (k,0,1) is called general offset assignment (GOA).
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SOA example
- Effect of optimised memory layout -

Variables in a basic block:  Access sequence:
V={a, b, c, d} S=(b,d a,cd c

Load AR,1
AR +=2
AR -=3
AR +=2
AR ++
AR --

O 0|00

W N -~ O

OO0 OOT

cost: 4
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SOA example
- Effect of optimised memory layout -

Variables in a basic block:  Access sequence:

V= {a, b; C, d} S = (b’ d, a, C, d, C)
0 3 Load AR,1 :b 0 b Load AR,O ;b
1 AR +=2 ,d 1 g AR ++ ,d
0 AR-=3 :a AR +=2 :a
2| c | AR+=2 ¢ | 2 C | AR-- C
3 d AR ++ -d 3 a AR -- ,d
AR -- 'C AR ++ 'C

cost: 4 cost: 2

Thursday, 13 March 2014



SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

[Bartley, 1992; Liao, 1995]
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SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

a, b

1 1

access graph

[Bartley, 1992; Liao, 1995]
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SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

@, ® @ ®

2 2

© d  (© d

access graph maximum weighted path=
max. weighted Hamilton

path covering (MWHC)

[Bartley, 1992; Liao, 1995]
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SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

1

2

a, b

1

) b

1 1
2

© d  (© d

access graph

maximum weighted path=
max. weighted Hamilton
path covering (MWHC)

QIO ([T

W N -~ O

memory layout

[Bartley, 1992; Liao, 1995]
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SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

@, ® @ ®

2 2

© d  (© d

access graph ~ maximum weighted path=  memory layout
max. weighted Hamilton

path covering (MWHC)

W N -~ O
QO | QT

SOA used as a building block for more complex situations

[Bartley, 1992; Liao, 1995]
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SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

@, ® @ ®

2 2

© d  (© d

access graph ~ maximum weighted path=  memory layout
max. weighted Hamilton

path covering (MWHC)

QIO ([T

W N -~ O

SOA used as a building block for more complex situations

=) significant interest in good SOA algorithms

[Bartley, 1992; Liao, 1995]
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Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
1 d
b 5 a
3 C

memory layout
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Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
1 d
b—d 5 -
3 C

memory layout
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Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
1 d
b—d—a 5 -
3 C

memory layout
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Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
1 d
b—d—a—c 5 -
3 C

memory layout
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Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
b—d—a—c 1 c
2 a
0 1 2 3 3 C

memory layout
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668

G
a4 b
Implicit edges of 1 1
weight O for all
unconnected 9

nodes. C d
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668

G
a4 b 2 (c,d)
Implicit edges of 1 1 1 (a,c)
weight 0 for all 1 (a,d)
unconnected 9 1 (b,d)

nodes. C d
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G (
a__ b  2(c,d) a b
Implicit edges of 1 1 1 (a,c)
weight 0 for all 1 (a,d)
A S N (X c d
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G (
a4 b 2 (c,d) C b
Implicit edges of 1 1 1 (a,c)
weight 0 for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G (
a4 b 2 (c,d) C b
Implicit edges of 1 1 1 (a,c)
weight 0 for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ¢
a__ . b 2(c,d) a b
Implicit edges of 1 1 1 (a’C) 1
weight O for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ¢
a__ . b 2(c,d) a b
Implicit edges of 1 1 1 (a’C) 1
weight O for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ¢
a__, b 2(c,d) a b
Implicit edges of 1 1 1 (a’C) 1
weight O for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ¢
a__, b 2(c,d) a b
Implicit edges of 1 1 1 (a’C) 1 1
weight O for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d
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Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ;
a__, b 2(cd) a b
Implicit edges of 1 1 : (a’C) 1 1
weight O for all 5 (a,d) 5
unconnected 1
nodes. C d (b’d) C d
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Liao’s algorithm
on a more complex graph

abcdefadadacdfad




Liao’s algorithm
on a more complex graph

abcdefadadacdfad




Liao’s algorithm
on a more complex graph

abcdefadadacdfad




Liao’s algorithm
on a more complex graph

abcdefadadacdfad




Liao’s algorithm
on a more complex graph

abcdefadadacdfad




Liao’s algorithm
on a more complex graph

abcdefadadacdfad
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Exploitation of instruction level parallelism (ILP)

Several transfers in the same cycle:

P | a
D
[ AX ]
Address- [ ]
registers
'_A‘O:IAT’_A%I" \ A e A e
i+1, j-i+
N \7Zn
x[j-i]*a[]
Address — (T, -
generation —
unit (AGU) iy Y 10}
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=xploiting [LP

® Normally looked at as a way if improving performance

® However on vliw and dsp architectures

® Also helps reduce code size

e |[f the parallel units are not doing anything

® then have to fill with a nop

- instruction packet >
instruction 1 instruction 2 instruction 3 instruction 4
floating point | |integer integer memory

unit unit unit unit

l

l
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Exploitation of instruction level parallelism (ILP)

1: MR := MR+(MX*MY);

2: MX:=D[A1];

3: MY:=P[A2];

‘51 ﬁ;;;’ 1”: MR := MR+(MX*MY), MX:=D[A1],
. , = - - ++:

2°: D[0]:= MR;

Normally tackled using dependence graph and list scheduling

*Modelling of possible parallelism using n-ary
compatibility relation, e.g. ~(1,2,3,4,5)

*Generation of integer programming (IP)- model
(max. 50 statements/model)

*Using standard-IP-solver to solve equations
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Exploitation of instruction level parallelism (ILP)

Results obtained through integer programming:

Code size reduction [%]

bassboost
dct
equalize
fir12
lattice2
pidctri
adaptive2
adaptive1

[Leupers, EuroDAC96]

Compaction times: 2 .. 35 sec
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Exploitation of Multimedia Instructions

b
FOR i:=0 TO n DO MMAdd (4 x 8/16 bit)
a[i] = b[i] + c[i] \
iR ®—
FOR i:=0 STEP 4 TO n DO
al[i J]=b[i I+4c[i ]; ¢

a[i+1]=b[i+1l]+c[i+1];
a[i+2]=b[i+2]+c[i+2]

I
a[i+3]=b[i+3]+c[i+3]\ / a
\

A form of limited vectorisation. Normally performed 1n code
generation stage rather then at restructure stage

—}
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Improvements for M3 DSP due to vectorization

rel. number
of cycles [%]

A
120- 5

100
80—
60—
40—

\
3 original code

H vectorized code

e
o
o )
o

—
e 2’ \O application

~
3@ e )
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Avoiding branch delay using predication

Large branch delay Realisation of if-statements
penalty:
with conditional jJumps or with
15 (TriNledia) bzw. condi. predicated execution:
40 (C62xx) |dela tional if (c)
slqts jump fa=x+y; Cond. instructions:
}b=X+Z; [c] ADD x,y,a
olse | [c] ADD x,z,b
Avoiding this penalty: {a=x-y; I [1c] SUB x,y,a
predicated execution: b=x-2z [ le] SUB x,z,b
[c] instruction }
c=true: instruction executed 1 cycle
c=false: effectively NOOP
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Cost of implementation methods for IF-Statements

Sourcecode: if (c1) {t1; if (c2) t2}

No precondition (no enclosing IF or enclosing IFs implemented with
cond. jumps)

1. Conditional jump: 2. Conditional
BNE c1, L; Instruction:
t1; [c1] t1
L: ...

Precondition (enclosing IF not implemented with conditional jumps)

3. Conditional jump : 4. Conditional
[c1] c:=c2 Instruction :
[~c1] c:=0 [c1] c:=c2
BNE c, L; [~c1] c:=0
t2; [c] t2
L: ...

Additional computations to compute effective condition c
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Optimization for nested IF-statements

Goal: compute fastest implementation for all IF-statements

/
ﬁD
R

R

-

- Selection of fastest
iImplementation for if-1 requires
knowledge of how fast if-2 can
be implemented.

- Execution time of if-2 depends
on setup code, and, hence, also
on how if 1 is implemented

- cyclic dependency!
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Dynamic programming algorithm (phase 1)

For each if-statement compute 4 cost values:
T1 : cond. jump, no precondition
T2 : cond. instructions, no precondition
T3 : cond. jump, with precondition
T4: cond. instructions, with precondition

e
ST 0
o

T |12 | Cf > Cif D

13| T4

bottom-up
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Dynamic programming (phase 2)

No precondition for top-level IF-statement.
Hence, comparison T1 < T2 suffices.

T1 < T2:
cond. branch faster,
no precondition for
nested IF-statements
T1 > T2:
cond. instructions
faster, precondition
for nested IF-state-
ments

T1

comparison

T2

T1

T2

T3

top-down

\ 4
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Results: Tl C62xXx

Runtimes (max) for 10 control-dominated examples

Example | Conditional | Conditional |Dynamic Min (col. |TIC
jumps instructions | program. 2-5) compiler
1 21 11 11 11 15
2 12 13 13 12 13
3 26 21 22 21 27
4 9 12 12 9 10
5 26 30 24 24 21
6 32 23 23 23 30
7 57 173 49 49 51
8 39 244 30 30 41
9 28 27 27 27 29
10 27 30 30 27 28

Average gain: 12%

Thursday, 13 March 2014




Function inlining:
advantages and limitations

Advantage: low calling

overhead
oush PC:
push b;
BRA sq;
pull R1;
Function sq(c:integer) :)nutf S;_’R1’R1;
bretgrn:mteger; bush R1:
ean - | BRA (R2)+1;
return c™c O |
nd: (\C\)(\ pU” R1;
ene o' ST R1,a;
a=sq(b); /

Nfip: o
%DQLD R1,b;
MUL R1,R1,R1;

ST R1,a

Limitations:

= Not all functions are
candidates.

= Code size explosion.

= Requires manual
identification using
‘inline’” qualifier.

Goal:
= Controlled code size
= Automatic identification
of suitable functions.

Thursday, 13 March 2014



Results for GSM speech and channel
encoder: #calls, #cycles (Tl ‘C62xx)

100 £ 100 || [%]

- W 105
- 1 110
S 75 115
= I 120
S o 12
S 50 | B 130
9 135
@ ] 140
2 o5 B 145
© 150
o

+

0 |

calls cycles

33% speedup for 25% increase in code size.
# of cycles not a monotonically decreasing function of the code size!
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Summary

® Address generating units

® Single offset assignment problem
® |Instruction level parallelism

® (Going beyond list scheduling

® \/ectorisation for multimedia instructions
® Avoiding branch delay

® Using predicated instructions
® Function inlining

® Trade off between code size and performance
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