

Michael O'Boyle Embedded Software

Overview

- Introduction
- Address generating units
 - Single offset assignment problem
- Instruction level parallelism
 - Going beyond list scheduling
- Vectorisation for multiimedia instructions
- Avoiding branch delay
 - Using predicated instructions
- Function inlining
 - Trade off betweern code size and performance
- Summary

Introduction

- Previously looked at large scale mapping issues
 - Look at smaller scale intra-processor utilisation
- Traditionally embedded processors programmed in assembler
 - As programmer cost rises, more emphasis on tools
- Compilers are a key component in exploiting embedded sysytems
- Different challenges and opportunities compared to general purpose
 - Architectures more complex and pre-specialised
 - Code size energy as well as speed
 - More work to do as less hardware support
- Compile time can take longer as amortised over number of uses

Address generation unit in parallel

Code : $y_i[j] = y_{i-1}[j] + x[j-i]*a[i] forall i, j$

Example: Data path ADSP210x

Compiling for AGus

• In effect does restricted register indirect addressing in parallel

```
LD r31, Mem[r1]
ADD r1, r1, 1
LD r31, Mem[r1]
```

Is replaced by

```
LD r31, Mem[a1]; (a1++)
```

- Where the a1++ may be explicit or implicit
- Very useful for loops and array refs

Eliminates an instruction per load - code size

However a challenge on how to utilise agus

Handling array references in loops

Exploitation of parallel address computations

Generic address generation unit (AGU) model

Parameters:

k =# address registers

m =# modify registers

Cost metric for AGU operations:

Operation	cost
immediate AR load	1
immediate AR modify	y 1
auto-increment/ decrement	0
AR += MR	0

Offset assignment problem (OA) - Effect of optimised memory layout -

Let's assume that we can modify the memory layout

offset assignment problem.

(k,m,r)-OA is the problem of generating a memory layout which minimizes the cost of addressing variables, with

- *k: number of address registers
- m: number of modify registers
- r: the offset range

The case (1,0,1) is called simple offset assignment (SOA), the case (k,0,1) is called general offset assignment (GOA).

SOA example - Effect of optimised memory layout -

Variables in a basic block: Access sequence:

$$V = \{a, b, c, d\}$$

$$S = (b, d, a, c, d, c)$$

0	а	Load AR,1;b
1	b	AR += 2 ;d $AR -= 3$:a
2	С	AR -= 3 ;a AR += 2 ;c
3	d	AR ++ ;d
		AR ;c

cost: 4

SOA example

- Effect of optimised memory layout -

Variables in a basic block: Access sequence:

$$V = \{a, b, c, d\}$$

$$S = (b, d, a, c, d, c)$$

cost: 4

cost: 2

access sequence: b d a c d c

access sequence: b d a c d c

access graph

access sequence: b d a c d c

maximum weighted path= max. weighted Hamilton path covering (MWHC)

access sequence: b d a c d c

access graph

maximum weighted path= max. weighted Hamilton path covering (MWHC)

0	b
1	d
2	С
3	а

memory layout

access sequence: b d a c d c

access graph

maximum weighted path= max. weighted Hamilton path covering (MWHC)

memory layout

SOA used as a building block for more complex situations

access sequence: b d a c d c

maximum weighted path= max. weighted Hamilton path covering (MWHC)

memory layout

SOA used as a building block for more complex situations

significant interest in good SOA algorithms

Nodes are added in the order in which they are used in the program.

Example:

Access sequence: S = (b, d, a, c, d, c)

b

Nodes are added in the order in which they are used in the program.

Example:

Access sequence: S = (b, d, a, c, d, c)

$$b \rightarrow d$$

Nodes are added in the order in which they are used in the program.

Example:

Access sequence: S = (b, d, a, c, d, c)

$$b \rightarrow d \rightarrow a$$

Nodes are added in the order in which they are used in the program.

Example:

Access sequence: S = (b, d, a, c, d, c)

$$b \rightarrow d \rightarrow a \rightarrow c$$

Nodes are added in the order in which they are used in the program.

Example:

Access sequence: S = (b, d, a, c, d, c)

$$b \longrightarrow d \longrightarrow a \longrightarrow c$$

$$0 \qquad 1 \qquad 2 \qquad 3$$

Similar to Kruskal's spanning tree algorithms:

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G' and does not cause any node in G' to have a degree > 2 then add this node to E' otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

Implicit edges of weight 0 for all unconnected nodes.

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G and does not cause any node in G to have a degree > 2 then add this node to E otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G and does not cause any node in G to have a degree > 2 then add this node to E otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G and does not cause any node in G to have a degree > 2 then add this node to E otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G' has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G and does not cause any node in G to have a degree > 2 then add this node to E otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G and does not cause any node in G to have a degree > 2 then add this node to E otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G and does not cause any node in G to have a degree > 2 then add this node to E otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G and does not cause any node in G to have a degree > 2 then add this node to E otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G and does not cause any node in G to have a degree > 2 then add this node to E otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G' has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

- 1. Sort edges of access graph G=(V,E) according to their weight
- 2. Construct a new graph G'=(V',E'), starting with E'=0
- 3. Select an edge e of G of highest weight; If this edge does not cause a cycle in G and does not cause any node in G to have a degree > 2 then add this node to E otherwise discard e.
- 4. Goto 3 as long as not all edges from G have been selected and as long as G has less than the maximum number of edges (|V|-1). Example: Access sequence: S=(b, d, a, c, d, c)

abcdefadadacdfad

G'

b e

 \bigcirc \bigcirc \bigcirc

Liao's algorithm on a more complex graph

abcdefadadacdfad

Exploitation of instruction level parallelism (ILP)

Several transfers in the same cycle:

Exploiting ILP

- Normally looked at as a way if improving performance
- However on vliw and dsp architectures
 - Also helps reduce code size
- If the parallel units are not doing anything
 - then have to fill with a nop

Exploitation of instruction level parallelism (ILP)

```
1: MR := MR+(MX*MY);

2: MX:=D[A1];

3: MY:=P[A2];

4: A1--;

5: A2++;

6: D[0]:= MR;

----

2': D[0]:= MR;
```

Normally tackled using dependence graph and list scheduling

- Modelling of possible parallelism using n-ary compatibility relation, e.g. ~(1,2,3,4,5)
- Generation of integer programming (IP)- model (max. 50 statements/model)
- Using standard-IP-solver to solve equations

Exploitation of instruction level parallelism (ILP)

Results obtained through integer programming:

Code size reduction [%]

Compaction times: 2 .. 35 sec

Exploitation of Multimedia Instructions

A form of limited vectorisation. Normally performed in code generation stage rather then at restructure stage

Improvements for M3 DSP due to vectorization

Avoiding branch delay using predication

Large branch delay penalty:

Avoiding this penalty: predicated execution:

[c] instruction

c=true: instruction executed

c=false: effectively NOOP

Realisation of *if-statements*

with conditional jumps or with predicated execution:

```
if (c)
{ a = x + y;
 b = x + z;
}
else
{ a = x - y;
 b = x - z;
}
```

Cond. instructions:

```
[c] ADD x,y,a
|| [c] ADD x,z,b
|| [!c] SUB x,y,a
|| [!c] SUB x,z,b
```

1 cycle

Cost of implementation methods for IF-Statements

```
Sourcecode: if (c1) {t1; if (c2) t2}
```

No precondition (no enclosing IF or enclosing IFs implemented with cond. jumps)

```
1. Conditional jump:2. Conditional Instruction:t1; [c1] t1L: ...
```

Precondition (enclosing IF not implemented with conditional jumps)

Additional computations to compute effective condition c

Optimization for nested IF-statements

Goal: compute fastest implementation for all IF-statements

- Selection of fastest implementation for if-1 requires knowledge of how fast if-2 can be implemented.
- Execution time of if-2 depends on setup code, and, hence, also on how if 1 is implemented
- cyclic dependency!

Dynamic programming algorithm (phase 1)

For each if-statement compute 4 cost values:

T1: cond. jump, no precondition

T2: cond. instructions, no precondition

T3: cond. jump, with precondition

T4: cond. instructions, with precondition

Dynamic programming (phase 2)

No precondition for top-level IF-statement. Hence, comparison T1 < T2 suffices.

Results: TI C62xx

Runtimes (max) for 10 control-dominated examples

Example	Conditional jumps	Conditional instructions	Dynamic program.	Min (col. 2-5)	TI C compiler
1	21	11	11	11	15
2	12	13	13	12	13
3	26	21	22	21	27
4	9	12	12	9	10
5	26	30	24	24	21
6	32	23	23	23	30
7	57	173	49	49	51
8	39	244	30	30	41
9	28	27	27	27	29
10	27	30	30	27	28

Average gain: 12%

Function inlining: advantages and limitations

Advantage: low calling

overhead

```
Function sq(c:integer)
return:integer;
begin
return c*c
end;
a=sq(b);
```

```
push PC;
          push b;
          BRA sq;
          pull R1;
          mul R1,R1,R1;
          pull R2;
          push R1;
          BRA (R2)+1;
          pull R1;
          ST R1,a;
Inlining LD R1,b;
         MUL R1,R1,R1;
```

Limitations:

- Not all functions are candidates.
- Code size explosion.
- Requires manual identification using 'inline' qualifier.

Goal:

- Controlled code size
- Automatic identification of suitable functions.

ST R1,a

Results for GSM speech and channel encoder: #calls, #cycles (TI 'C62xx)

33% speedup for 25% increase in code size.
of cycles not a monotonically decreasing function of the code size!

Summary

- Address generating units
 - Single offset assignment problem
- Instruction level parallelism
 - Going beyond list scheduling
- Vectorisation for multimedia instructions
- Avoiding branch delay
 - Using predicated instructions
- Function inlining
 - Trade off between code size and performance