
Lecture 16: Embedded Compiler Optimisations

Michael O’Boyle
Embedded Software

Thursday, 13 March 2014

Overview

• Introduction

• Address generating units

• Single offset assignment problem

• Instruction level parallelism

• Going beyond list scheduling

• Vectorisation for multiimedia instructions

• Avoiding branch delay

• Using predicated instructions

• Function inlining

• Trade off betweern code size and performance

• Summary

Thursday, 13 March 2014

Introduction

• Previously looked at large scale mapping issues

• Look at smaller scale intra-processor utilisation

• Traditionally embedded processors programmed in assembler

• As programmer cost rises, more emphasis on tools

• Compilers are a key component in exploiting embedded sysytems

• Different challenges and opportunities compared to general purpose

• Architectures more complex and pre-specialised

• Code size energy as well as speed

• More work to do as less hardware support

• Compile time can take longer as amortised over number of uses

Thursday, 13 March 2014

 - -

Address generation unit in parallel

Example: Data path ADSP210x

Code : yi[j] = yi-1[j] + x[j-i]*a[i] forall i, j

- Parallelism
- Dedicated
 registers
- No matching
 compiler ⇒
 inefficient
 code

MR

MF
MX MY

*
+,-

AR

AF
AX AY

+,-,..

D
P

yi-1[j]

x[j-i]

x[j-i]*a[i]

a[i]

Address
generation
unit (AGU)

Address-
registers
A0, A1, A2 ..
i+1, j-i-1

a
x

Thursday, 13 March 2014

Compiling for AGus

• In effect does restricted register indirect addressing in parallel

LD r31, Mem[r1]

ADD r1, r1, 1

LD r31, Mem[r1]

• Is replaced by

LD r31, Mem[a1]; (a1++)

• Where the a1++ may be explicit or implicit

• Very useful for loops and array refs

Eliminates an instruction per load - code size

However a challenge on how to utilise agus

Thursday, 13 March 2014

 - -

Handling array references in loops

Example:
for (i=2; i<=N; i++)
{ .. B[i+1] /*A2++ */
 .. B[i] /*A1-- */
 .. B[i+2] /*A2++ */
 .. B[i-1] /*A1++ */
 .. B[i+3] /*A2-- */
 .. B[i] } /*A1++ */

Offsets

C
on

tr
ol

 s
te

ps

9

8

7

6

5

4

3

2

1

0 1 2 3 4-1-2-3

X

X

X

X

X

X

X

A2

A1

X

X

Reference: A. Basu, R. Leupers, P. Marwedel:
Array Index Allocation under Register Constraints,
Int. Conf. on VLSI Design, Goa/India, 1999

Cost for crossing loop
boundaries considered.

Thursday, 13 March 2014

 - -

Generic address generation unit (AGU) model

Exploitation of parallel address computations

Parameters:
k = # address registers
m = # modify registers

Cost metric for AGU
operations:

+/-

Memory

1

Instruction Field

Modify
Register

File

Address
Register

File

Operation cost
immediate AR load 1
immediate AR modify 1
auto-increment/ 0
decrement
AR += MR 0

Thursday, 13 March 2014

 - -

Offset assignment problem (OA)
- Effect of optimised memory layout -

Let's assume that we can modify the memory layout
Foffset assignment problem.

(k,m,r)-OA is the problem of generating a memory layout
which minimizes the cost of addressing variables, with
Fk: number of address registers
Fm: number of modify registers
Fr: the offset range

The case (1,0,1) is called simple offset assignment (SOA),
the case (k,0,1) is called general offset assignment (GOA).

Thursday, 13 March 2014

 - -

Variables in a basic block: Access sequence:
V = {a, b, c, d} S = (b, d, a, c, d, c)

Load AR,1 ;b
AR += 2 ;d
AR -= 3 ;a
AR += 2 ;c
AR ++ ;d
AR -- ;c

a
b
c
d

0
1
2
3

cost: 4

SOA example
- Effect of optimised memory layout -

Thursday, 13 March 2014

 - -

Variables in a basic block: Access sequence:
V = {a, b, c, d} S = (b, d, a, c, d, c)

Load AR,1 ;b
AR += 2 ;d
AR -= 3 ;a
AR += 2 ;c
AR ++ ;d
AR -- ;c

a
b
c
d

0
1
2
3

cost: 4

SOA example
- Effect of optimised memory layout -

cost: 2

Load AR,0 ;b
AR ++ ;d
AR +=2 ;a
AR -- ;c
AR -- ;d
AR ++ ;c

b
d
c
a

0

1
2
3

Thursday, 13 March 2014

 - -

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

Thursday, 13 March 2014

 - -

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

a b

c d

11
1

2

access graph

Thursday, 13 March 2014

 - -

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

a b

c d

11
1

2

access graph

a b

c d

11

maximum weighted path=
max. weighted Hamilton
path covering (MWHC)

2

Thursday, 13 March 2014

 - -

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

a b

c d

11
1

2

access graph

a b

c d

11

maximum weighted path=
max. weighted Hamilton
path covering (MWHC)

2

b
d
c
a

0
1
2
3

memory layout

Thursday, 13 March 2014

 - -

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

a b

c d

11
1

2

access graph

a b

c d

11

maximum weighted path=
max. weighted Hamilton
path covering (MWHC)

2

b
d
c
a

0
1
2
3

memory layout

SOA used as a building block for more complex situations

Thursday, 13 March 2014

 - -

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence: b d a c d c

[Bartley, 1992; Liao, 1995]

a b

c d

11
1

2

access graph

a b

c d

11

maximum weighted path=
max. weighted Hamilton
path covering (MWHC)

2

b
d
c
a

0
1
2
3

memory layout

SOA used as a building block for more complex situations

significant interest in good SOA algorithms

Thursday, 13 March 2014

 - -

Naïve SOA

b
b
d
a
c

0
1
2
3

memory layout

Nodes are added in the order
in which they are used in the program.

Example:
Access sequence: S = (b, d, a, c, d, c)

1 0 0 10 1

Thursday, 13 March 2014

 - -

Naïve SOA

b d
b
d
a
c

0
1
2
3

memory layout

Nodes are added in the order
in which they are used in the program.

Example:
Access sequence: S = (b, d, a, c, d, c)

1 0 0 10 1

Thursday, 13 March 2014

 - -

Naïve SOA

b d a
b
d
a
c

0
1
2
3

memory layout

Nodes are added in the order
in which they are used in the program.

Example:
Access sequence: S = (b, d, a, c, d, c)

1 0 0 10 1

Thursday, 13 March 2014

 - -

Naïve SOA

b d ca
b
d
a
c

0
1
2
3

memory layout

Nodes are added in the order
in which they are used in the program.

Example:
Access sequence: S = (b, d, a, c, d, c)

1 0 0 10 1

Thursday, 13 March 2014

 - -

Naïve SOA

b d ca
0 1 2 3

b
d
a
c

0
1
2
3

memory layout

Nodes are added in the order
in which they are used in the program.

Example:
Access sequence: S = (b, d, a, c, d, c)

1 0 0 10 1

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

a b

c d

11
1

2

G

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

2 (c,d)
1 (a,c)
1 (a,d)
1 (b,d)

a b

c d

11
1

2

G

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

2 (c,d)
1 (a,c)
1 (a,d)
1 (b,d)

a b

c d

11
1

2

G
a b

c d

G‘

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

2

2 (c,d)
1 (a,c)
1 (a,d)
1 (b,d)

a b

c d

11
1

2

G
a b

c d

G‘

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

2

2 (c,d)
1 (a,c)
1 (a,d)
1 (b,d)

a b

c d

11
1

2

G
a b

c d

G‘

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

1
2

2 (c,d)
1 (a,c)
1 (a,d)
1 (b,d)

a b

c d

11
1

2

G
a b

c d

G‘

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

1
2

2 (c,d)
1 (a,c)
1 (a,d)
1 (b,d)

a b

c d

11
1

2

G
a b

c d

G‘

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

1
2

2 (c,d)
1 (a,c)
1 (a,d)
1 (b,d)

a b

c d

11
1

2

G
a b

c d

G‘

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

11
2

2 (c,d)
1 (a,c)
1 (a,d)
1 (b,d)

a b

c d

11
1

2

G
a b

c d

G‘

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G’=(V’,E’), starting with E’=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
in G’ and does not cause any node in G’ to have a degree > 2 then add this
node to E’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
 and as long as G’ has less than the maximum number of edges (|V|-1).
 Example: Access sequence: S=(b, d, a, c, d, c)

1 0 0 01 0

11
2

2 (c,d)
1 (a,c)
1 (a,d)
1 (b,d)

a b

c d

11
1

2

G
a b

c d

G‘

Implicit edges of
weight 0 for all
unconnected
nodes.

Thursday, 13 March 2014

 - -

Liao’s algorithm
on a more complex graph

a b c d e f a d a d a c d f a d

a

e

c d

f

b

2

1

2

1
5 1

11

1

G

a

e

c d

f

b

G’

Thursday, 13 March 2014

 - -

Liao’s algorithm
on a more complex graph

a b c d e f a d a d a c d f a d

a

e

c d

f

b

2

1

2

1
5 1

11

1

G

a

e

c d

f

b
5

G’

Thursday, 13 March 2014

 - -

Liao’s algorithm
on a more complex graph

a b c d e f a d a d a c d f a d

a

e

c d

f

b

2

1

2

1
5 1

11

1

G

a

e

c d

f

b

2

5

G’

Thursday, 13 March 2014

 - -

Liao’s algorithm
on a more complex graph

a b c d e f a d a d a c d f a d

a

e

c d

f

b

2

1

2

1
5 1

11

1

G

a

e

c d

f

b

2

2

5

G’

Thursday, 13 March 2014

 - -

Liao’s algorithm
on a more complex graph

a b c d e f a d a d a c d f a d

a

e

c d

f

b

2

1

2

1
5 1

11

1

G

a

e

c d

f

b

2

2

5

1

G’

Thursday, 13 March 2014

 - -

Liao’s algorithm
on a more complex graph

a b c d e f a d a d a c d f a d

a

e

c d

f

b

2

1

2

1
5 1

11

1

G

a

e

c d

f

b

2

2

5 1

1

G’

Thursday, 13 March 2014

 - -

Exploitation of instruction level parallelism (ILP)

MR

MF
MX MY

*
+,-

AR

AF
AX AY

+,-,..

D
P

yi-1[j]

x[j-i]

x[j-i]*a[i]

a[i]

Address
generation
unit (AGU)

Address-
registers
A0, A1, A2 ..
i+1, j-i+1

a
x

Several transfers in the same cycle:

Thursday, 13 March 2014

Exploiting ILP

• Normally looked at as a way if improving performance

• However on vliw and dsp architectures

• Also helps reduce code size

• If the parallel units are not doing anything

• then have to fill with a nop

Thursday, 13 March 2014

 - -

1: MR := MR+(MX*MY);
2: MX:=D[A1];
3: MY:=P[A2];
4: A1- -;
5: A2++;
6: D[0]:= MR;
.....

1´: MR := MR+(MX*MY), MX:=D[A1],
 MY:=P[A2], A1- -, A2++;
2´: D[0]:= MR;

•Modelling of possible parallelism using n-ary
compatibility relation, e.g. ~(1,2,3,4,5)

•Generation of integer programming (IP)- model
(max. 50 statements/model)

•Using standard-IP-solver to solve equations

Exploitation of instruction level parallelism (ILP)

Normally tackled using dependence graph and list scheduling

Thursday, 13 March 2014

 - -

Exploitation of instruction level parallelism (ILP)

Code size reduction [%]

0 10 20 30 40

bassboost
dct

equalize
fir12

lattice2
pidctrl

adaptive2
adaptive1

[Leupers, EuroDAC96]

Compaction times: 2 .. 35 sec

Results obtained through integer programming:

Thursday, 13 March 2014

 - -

Exploitation of Multimedia Instructions

FOR i:=0 TO n DO
 a[i] = b[i] + c[i]

FOR i:=0 STEP 4 TO n DO
 a[i]=b[i]+c[i];
 a[i+1]=b[i+1]+c[i+1];
 a[i+2]=b[i+2]+c[i+2];
 a[i+3]=b[i+3]+c[i+3];

+

MMAdd (4 x 8/16 bit)

+

..

.

a

b

c

A form of limited vectorisation. Normally performed in code
generation stage rather then at restructure stage

Thursday, 13 March 2014

 - -

Improvements for M3 DSP due to vectorization

Thursday, 13 March 2014

 - -

Avoiding branch delay using predication

Large branch delay
penalty:

Condi-
tional
jump

15 (TriMedia) bzw.
40 (C62xx) delay
slots

Avoiding this penalty:
predicated execution:
[c] instruction
c=true: instruction executed
c=false: effectively NOOP

Realisation of if-statements
with conditional jumps or with
predicated execution:

if (c)
{ a = x + y;
 b = x + z;
}
else
{ a = x - y;
 b = x - z;
}

Cond. instructions:

 [c] ADD x,y,a
|| [c] ADD x,z,b
|| [!c] SUB x,y,a
|| [!c] SUB x,z,b

1 cycle

Thursday, 13 March 2014

 - -

Cost of implementation methods for IF-Statements

Sourcecode: if (c1) {t1; if (c2) t2}
No precondition (no enclosing IF or enclosing IFs implemented with
cond. jumps)

Additional computations to compute effective condition c

Precondition (enclosing IF not implemented with conditional jumps)

1. Conditional jump:
 BNE c1, L;
 t1;
 L: ...

3. Conditional jump :
 [c1] c:=c2
 [~c1] c:=0
 BNE c, L;
 t2;
 L: ...

2. Conditional
Instruction:
 [c1] t1

4. Conditional
Instruction :
 [c1] c:=c2
 [~c1] c:=0
 [c] t2

Thursday, 13 March 2014

 - -

Optimization for nested IF-statements

if 2

if 1

- Selection of fastest
implementation for if-1 requires
knowledge of how fast if-2 can
be implemented.
- Execution time of if-2 depends
on setup code, and, hence, also
on how if 1 is implemented
- cyclic dependency!

Goal: compute fastest implementation for all IF-statements

Thursday, 13 March 2014

 - -

Dynamic programming algorithm (phase 1)

For each if-statement compute 4 cost values:
 T1 : cond. jump, no precondition
 T2 : cond. instructions, no precondition
 T3 : cond. jump, with precondition
 T4: cond. instructions, with precondition

T1 T2
T3 T4 if

 if

if ifT1 T2
T3 T4 bo

tto
m

-u
p

Thursday, 13 March 2014

 - -

Dynamic programming (phase 2)

 if

 if

if if

No precondition for top-level IF-statement.
Hence, comparison T1 < T2 suffices.

T1 < T2:
 cond. branch faster,
 no precondition for
 nested IF-statements
T1 > T2:
 cond. instructions
 faster, precondition
 for nested IF-state-
 ments

to
p-

do
w

n

T1 T2

T1 T2
T3 T4

<
>

comparison

Thursday, 13 March 2014

 - -

Results: TI C62xx

Runtimes (max) for 10 control-dominated examples

Average gain: 12%

Example Conditional
jumps

Conditional
instructions

Dynamic
program.

Min (col.
2-5)

TI C
compiler

1 21 11 11 11 15
2 12 13 13 12 13
3 26 21 22 21 27
4 9 12 12 9 10
5 26 30 24 24 21
6 32 23 23 23 30
7 57 173 49 49 51
8 39 244 30 30 41
9 28 27 27 27 29
10 27 30 30 27 28

Thursday, 13 March 2014

 - -

Function inlining:
advantages and limitations

Function sq(c:integer)
 return:integer;
begin
 return c*c
end;
....
a=sq(b);
....

....
LD R1,b;
MUL R1,R1,R1;
ST R1,a
....

push PC;
push b;
BRA sq;
 pull R1;
 mul R1,R1,R1;
 pull R2;
 push R1;
 BRA (R2)+1;
pull R1;
ST R1,a;

Advantage: low calling
overhead

Limitations:
§ Not all functions are

 candidates.
§ Code size explosion.
§ Requires manual

 identification using
 ‘inline’ qualifier.

Inlining

branching Goal:
§Controlled code size
§Automatic identification

of suitable functions.

Thursday, 13 March 2014

 - -

Results for GSM speech and channel
encoder: #calls, #cycles (TI ‘C62xx)

0

25

50

75

100

calls cycles

re

la
tiv

e
to

 n
o

in
lin

in
g

.

100
105
110
115
120
125
130
135
140
145
150

33% speedup for 25% increase in code size.
of cycles not a monotonically decreasing function of the code size!

L [%]

Thursday, 13 March 2014

Summary

• Address generating units

• Single offset assignment problem

• Instruction level parallelism

• Going beyond list scheduling

• Vectorisation for multimedia instructions

• Avoiding branch delay

• Using predicated instructions

• Function inlining

• Trade off between code size and performance

Thursday, 13 March 2014

