Lecture 16: Embedded Compiler Optimisations

Michael O’Boyle
Embedded Software

Thursday, 13 March 2014

Overview

® Introduction
® Address generating units
® Single offset assignment problem
® Instruction level parallelism
® (Going beyond list scheduling
® \/ectorisation for multiimedia instructions
® Avoiding branch delay
® Using predicated instructions
® Function inlining
® Trade off betweern code size and performance

® Summary

Thursday, 13 March 2014

INntroduction

® Previously looked at large scale mapping issues
® | ook at smaller scale intra-processor utilisation
® Traditionally embedded processors programmed in assembler
® As programmer cost rises, more emphasis on tools
e Compilers are a key component in exploiting embedded sysytems
® Different challenges and opportunities compared to general purpose

® Architectures more complex and pre-specialised
® Code size energy as well as speed
® More work to do as less hardware support

e Compile time can take longer as amortised over number of uses

Thursday, 13 March 2014

Address generation unit in parallel

Code : y;[j1 = vi4[i] + x[j-i]*a[i] foralli,

Example: Data path ADSP210x

P | a
D [X
x[j-i] ali]
= —— [- Parallel
Address- AF J— L N arq elism
registers |- ?eegilsctaetresd
A1, A2 ..

ff1 : j:i-1 xlj\/xlj xl/\/xlj | - No matching
Address —[F - X[j-l] a[l] inefficient
generation [AR] : code
unit (AGU) vR] Vi.4[]]

Thursday, 13 March 2014

Compiling for AGus

e In effect does restricted register indirect addressing in parallel

LD r31, Mem([r1]
ADD r1,r1, 1
| D r31, Mem|r1]

* |s replaced by

| D r31, Meml|al]; (@1++)

® \Where the a1++ may be explicit or implicit
® \/ery useful for loops and array refs
Eliminates an instruction per load - code size

However a challenge on how to utilise agus

Thursday, 13 March 2014

Handling array references in loops

Example: 1 P <
for (i=2; i<=N; i++) S LR

(B[] rA2++ || /) X\

Bl XA *71/ -\ X
. EHLZ] ﬁ*ﬁgﬁ *l/ﬂ/j///éj \

eps

|

LBi-1] A1+ YL B " \ \ A2 \ X\

. B[i+3] /*A2-- */
LB[i] Y A1+ %

Control
[@))
|

Cost for crossing loop 7 I I N S
boundaries considered.

Reference: A. Basu, R. Leupers, P. Marwedel: Vg S j

Array Index Allocation under Register Constraints, 3 5 1 0 1
Int. Conf. on VLSI Design, Goa/lndia, 1999 - - -

Offsets

Thursday, 13 March 2014

Exploitation of parallel address computations

Generic address generation unit (AGU) model
Instruction Field

L B
/|
Add _ress
Rngillzter \ ¥ /

Modify
Register
File

Parameters:

K = # address registers
m = # modify registers

Memory

Cost metric for AGU
operations:

Operation cost
immediate AR load 1
immediate AR modify 1
auto-increment/ 0
decrement

AR += MR 0

Thursday, 13 March 2014

Offset assignment problem (OA)
- Effect of optimised memory layout -

Let's assume that we can modify the memory layout
offset assignment problem.

(k,m,r)-OA is the problem of generating a memory layout
which minimizes the cost of addressing variables, with

k. number of address registers

m:. number of modify registers

r. the offset range
The case (1,0,1) is called simple offset assignment (SOA),
the case (k,0,1) is called general offset assignment (GOA).

Thursday, 13 March 2014

SOA example
- Effect of optimised memory layout -

Variables in a basic block: Access sequence:
V={a, b, c, d} S=(b,d a,cd c

Load AR,1
AR +=2
AR -=3
AR +=2
AR ++
AR --

O 0|00

W N -~ O

OO0 OOT

cost: 4

Thursday, 13 March 2014

SOA example
- Effect of optimised memory layout -

Variables in a basic block: Access sequence:

V= {a, b; C, d} S = (b’ d, a, C, d, C)
0 3 Load AR,1 :b 0 b Load AR,O ;b
1 AR +=2 ,d 1 g AR ++ ,d
0 AR-=3 :a AR +=2 :a
2| c | AR+=2 ¢ | 2 C | AR-- C
3 d AR ++ -d 3 a AR -- ,d
AR -- 'C AR ++ 'C

cost: 4 cost: 2

Thursday, 13 March 2014

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

[Bartley, 1992; Liao, 1995]

Thursday, 13 March 2014

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

a, b

1 1

access graph

[Bartley, 1992; Liao, 1995]

Thursday, 13 March 2014

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

@, ® @ ®

2 2

© d (© d

access graph maximum weighted path=
max. weighted Hamilton

path covering (MWHC)

[Bartley, 1992; Liao, 1995]

Thursday, 13 March 2014

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

1

2

a, b

1

) b

1 1
2

© d (© d

access graph

maximum weighted path=
max. weighted Hamilton
path covering (MWHC)

QIO ([T

W N -~ O

memory layout

[Bartley, 1992; Liao, 1995]

Thursday, 13 March 2014

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

@, ® @ ®

2 2

© d (© d

access graph ~ maximum weighted path= memory layout
max. weighted Hamilton

path covering (MWHC)

W N -~ O
QO | QT

SOA used as a building block for more complex situations

[Bartley, 1992; Liao, 1995]

Thursday, 13 March 2014

SOA example: Access sequence, access graph and
Hamiltonian paths

access sequence:bdacdc

@, ® @ ®

2 2

© d (© d

access graph ~ maximum weighted path= memory layout
max. weighted Hamilton

path covering (MWHC)

QIO ([T

W N -~ O

SOA used as a building block for more complex situations

=) significant interest in good SOA algorithms

[Bartley, 1992; Liao, 1995]

Thursday, 13 March 2014

Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
1 d
b 5 a
3 C

memory layout

Thursday, 13 March 2014

Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
1 d
b—d 5 -
3 C

memory layout

Thursday, 13 March 2014

Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
1 d
b—d—a 5 -
3 C

memory layout

Thursday, 13 March 2014

Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
1 d
b—d—a—c 5 -
3 C

memory layout

Thursday, 13 March 2014

Naive SOA

Nodes are added in the order
iIn which they are used in the program.

Example:
Access sequence: S = (b, d, a, ¢, d, c)
e
0 b
b—d—a—c 1 c
2 a
0 1 2 3 3 C

memory layout

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668

G
a4 b
Implicit edges of 1 1
weight O for all
unconnected 9

nodes. C d

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668

G
a4 b 2 (c,d)
Implicit edges of 1 1 1 (a,c)
weight 0 for all 1 (a,d)
unconnected 9 1 (b,d)

nodes. C d

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G (
a__ b 2(c,d) a b
Implicit edges of 1 1 1 (a,c)
weight 0 for all 1 (a,d)
A S N (X c d

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G (
a4 b 2 (c,d) C b
Implicit edges of 1 1 1 (a,c)
weight 0 for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G (
a4 b 2 (c,d) C b
Implicit edges of 1 1 1 (a,c)
weight 0 for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ¢
a__ . b 2(c,d) a b
Implicit edges of 1 1 1 (a’C) 1
weight O for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ¢
a__ . b 2(c,d) a b
Implicit edges of 1 1 1 (a’C) 1
weight O for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ¢
a__, b 2(c,d) a b
Implicit edges of 1 1 1 (a’C) 1
weight O for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ¢
a__, b 2(c,d) a b
Implicit edges of 1 1 1 (a’C) 1 1
weight O for all 1 (a,d)
unconnected 9 1 (b,d) 2
nodes. C d ’ C d

Thursday, 13 March 2014

Liao’s algorithm

Similar to Kruskal’s spanning tree algorithms:
1. Sort edges of access graph G=(V,E) according to their weight
2. Construct a new graph G'=(V’,E’), starting with £'=0
3. Select an edge e of G of highest weight; If this edge does not cause a cycle
In G' and does not cause any node in G’ to have a degree > 2 then add this
node to £’ otherwise discard e.
4. Goto 3 as long as not all edges from G have been selected
and as long as G’ has less than the maximum number of edges (|V]-1).
Example: Access sequence: S=(b, d, a, ¢, d, ¢)

{ 61668
G

G ;
a__, b 2(cd) a b
Implicit edges of 1 1 : (a’C) 1 1
weight O for all 5 (a,d) 5
unconnected 1
nodes. C d (b’d) C d

Thursday, 13 March 2014

Liao’s algorithm
on a more complex graph

abcdefadadacdfad

Liao’s algorithm
on a more complex graph

abcdefadadacdfad

Liao’s algorithm
on a more complex graph

abcdefadadacdfad

Liao’s algorithm
on a more complex graph

abcdefadadacdfad

Liao’s algorithm
on a more complex graph

abcdefadadacdfad

Liao’s algorithm
on a more complex graph

abcdefadadacdfad

Thursday, 13 March 2014

Exploitation of instruction level parallelism (ILP)

Several transfers in the same cycle:

P | a
D
[AX]
Address- []
registers
'_A‘O:IAT’_A%I" \ A e A e
i+1, j-i+
N \7Zn
x[j-i]*a[]
Address — (T, -
generation —
unit (AGU) iy Y 10}

Thursday, 13 March 2014

=xploiting [LP

® Normally looked at as a way if improving performance

® However on vliw and dsp architectures

® Also helps reduce code size

e |[f the parallel units are not doing anything

® then have to fill with a nop

- instruction packet >
instruction 1 instruction 2 instruction 3 instruction 4
floating point | |integer integer memory

unit unit unit unit

l

l

Thursday, 13 March 2014

Exploitation of instruction level parallelism (ILP)

1: MR := MR+(MX*MY);

2: MX:=D[A1];

3: MY:=P[A2];

‘51 ﬁ;;;’ 1”: MR := MR+(MX*MY), MX:=D[A1],
. , = - - ++:

2°: D[0]:= MR;

Normally tackled using dependence graph and list scheduling

*Modelling of possible parallelism using n-ary
compatibility relation, e.g. ~(1,2,3,4,5)

*Generation of integer programming (IP)- model
(max. 50 statements/model)

*Using standard-IP-solver to solve equations

Thursday, 13 March 2014

Exploitation of instruction level parallelism (ILP)

Results obtained through integer programming:

Code size reduction [%]

bassboost
dct
equalize
fir12
lattice2
pidctri
adaptive2
adaptive1

[Leupers, EuroDAC96]

Compaction times: 2 .. 35 sec

Thursday, 13 March 2014

Exploitation of Multimedia Instructions

b
FOR i:=0 TO n DO MMAdd (4 x 8/16 bit)
a[i] = b[i] + c[i] \
iR ®—
FOR i:=0 STEP 4 TO n DO
al[i J]=b[i I+4c[i]; ¢

a[i+1]=b[i+1l]+c[i+1];
a[i+2]=b[i+2]+c[i+2]

I
a[i+3]=b[i+3]+c[i+3]\ / a
\

A form of limited vectorisation. Normally performed 1n code
generation stage rather then at restructure stage

—}

Thursday, 13 March 2014

Improvements for M3 DSP due to vectorization

rel. number
of cycles [%]

A
120- 5

100
80—
60—
40—

\
3 original code

H vectorized code

e
o
o)
o

—
e 2’ \O application

~
3@ e)

Thursday, 13 March 2014

Avoiding branch delay using predication

Large branch delay Realisation of if-statements
penalty:
with conditional jJumps or with
15 (TriNledia) bzw. condi. predicated execution:
40 (C62xx) |dela tional if (c)
slqts jump fa=x+y; Cond. instructions:
}b=X+Z; [c] ADD x,y,a
olse | [c] ADD x,z,b
Avoiding this penalty: {a=x-y; I [1c] SUB x,y,a
predicated execution: b=x-2z [le] SUB x,z,b
[c] instruction }
c=true: instruction executed 1 cycle
c=false: effectively NOOP

Thursday, 13 March 2014

Cost of implementation methods for IF-Statements

Sourcecode: if (c1) {t1; if (c2) t2}

No precondition (no enclosing IF or enclosing IFs implemented with
cond. jumps)

1. Conditional jump: 2. Conditional
BNE c1, L; Instruction:
t1; [c1] t1
L: ...

Precondition (enclosing IF not implemented with conditional jumps)

3. Conditional jump : 4. Conditional
[c1] c:=c2 Instruction :
[~c1] c:=0 [c1] c:=c2
BNE c, L; [~c1] c:=0
t2; [c] t2
L: ...

Additional computations to compute effective condition c

Thursday, 13 March 2014

Optimization for nested IF-statements

Goal: compute fastest implementation for all IF-statements

/
ﬁD
R

R

-

- Selection of fastest
iImplementation for if-1 requires
knowledge of how fast if-2 can
be implemented.

- Execution time of if-2 depends
on setup code, and, hence, also
on how if 1 is implemented

- cyclic dependency!

Thursday, 13 March 2014

Dynamic programming algorithm (phase 1)

For each if-statement compute 4 cost values:
T1 : cond. jump, no precondition
T2 : cond. instructions, no precondition
T3 : cond. jump, with precondition
T4: cond. instructions, with precondition

e
ST 0
o

T |12 | Cf > Cif D

13| T4

bottom-up

Thursday, 13 March 2014

Dynamic programming (phase 2)

No precondition for top-level IF-statement.
Hence, comparison T1 < T2 suffices.

T1 < T2:
cond. branch faster,
no precondition for
nested IF-statements
T1 > T2:
cond. instructions
faster, precondition
for nested IF-state-
ments

T1

comparison

T2

T1

T2

T3

top-down

\ 4

Thursday, 13 March 2014

Results: Tl C62xXx

Runtimes (max) for 10 control-dominated examples

Example | Conditional | Conditional |Dynamic Min (col. |TIC
jumps instructions | program. 2-5) compiler
1 21 11 11 11 15
2 12 13 13 12 13
3 26 21 22 21 27
4 9 12 12 9 10
5 26 30 24 24 21
6 32 23 23 23 30
7 57 173 49 49 51
8 39 244 30 30 41
9 28 27 27 27 29
10 27 30 30 27 28

Average gain: 12%

Thursday, 13 March 2014

Function inlining:
advantages and limitations

Advantage: low calling

overhead
oush PC:
push b;
BRA sq;
pull R1;
Function sq(c:integer) :)nutf S;_’R1’R1;
bretgrn:mteger; bush R1:
ean - | BRA (R2)+1;
return c™c O |
nd: (\C\)(\ pU” R1;
ene o' ST R1,a;
a=sq(b); /

Nfip: o
%DQLD R1,b;
MUL R1,R1,R1;

ST R1,a

Limitations:

= Not all functions are
candidates.

= Code size explosion.

= Requires manual
identification using
‘inline’” qualifier.

Goal:
= Controlled code size
= Automatic identification
of suitable functions.

Thursday, 13 March 2014

Results for GSM speech and channel
encoder: #calls, #cycles (Tl ‘C62xx)

100 £ 100 || [%]

- W 105
- 1 110
S 75 115
= I 120
S o 12
S 50 | B 130
9 135
@] 140
2 o5 B 145
© 150
o

+

0 |

calls cycles

33% speedup for 25% increase in code size.
of cycles not a monotonically decreasing function of the code size!

Thursday, 13 March 2014

Summary

® Address generating units

® Single offset assignment problem
® |Instruction level parallelism

® (Going beyond list scheduling

® \/ectorisation for multimedia instructions
® Avoiding branch delay

® Using predicated instructions
® Function inlining

® Trade off between code size and performance

Thursday, 13 March 2014

