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Overview

• Scheduling dependent tasks

• Mutual exclusion 

• Priority Inversion

• Priority Inheritance

• Deadlock

• Priority Ceiling Protocol

• Summary
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Resource access protocols

Critical sections: sections of code at which
exclusive access to some resource must be guaranteed.
Can be guaranteed with semaphores S or “mutexes”.

P(S)

V(S)

P(S)

V(S)

P(S) checks semaphore to see 
if resource is available 
and if yes, sets S to “used“. 
Uninterruptible operations!
If no, calling task has to wait.

V(S): sets S to “unused“ and 
starts sleeping task (if any).

Mutually 
exclusive
access
to resource
guarded by
S

Task 1 Task 2

Note: Preemption still possible in critical sections
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Blocking due to mutual exclusion

Priority T1 assumed to be > than priority of T2.
If T2 requests exclusive access first (at t0), T1 has to wait
until T2 releases the resource (at time t3):

For 2 tasks:
blocking is bounded by the length of the critical section

However not true in general
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Priority inversion

Priority of T1 > priority of T2 > priority of T3.
T2 preempts T3:
T2 can prevent T3 from releasing the resource.

Blocking with > 2 tasks can exceed the length of any critical section
T2 not involved in critical section but ends up affecting T1
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Solution: Forbid preemption in critical sections

T1

T2

T3

T1 has high priority but is blocked T1 independent of lock

P(S)

P(S)

P(S)

P(S)

V(S)

V(S)

Seems a good idea but leads to problems
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Priority inheritance can help

§The idea is that if an important task is blocked by an 
unimportant one, 
§ the unimportant one is elevated and executed quickly 

to release the lock
§Tasks are scheduled according to their active priorities. 
§Tasks with the same priorities are scheduled.
§  First come first served. As usual

§Rule: tasks inherit the highest priority of tasks blocked 
by it.
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Priority inheritance can help

§Rule: tasks inherit the highest priority of tasks blocked 
by it.

§ So if a task T1 executes P(S) & exclusive access already granted to T2, then T1 will 
become blocked.

§ If priority(T2) < priority(T1): T2 inherits the priority of T1.

§  T2 resumes. 

§ When T2 executes  V(S), its priority is decreased to the highest priority of the tasks 
blocked by it.

§ If no other task blocked by T2: priority(T2):= original value. 
Highest priority task so far blocked on S is resumed.

§ Transitive: if T2 blocks T1 and T1 blocks T0,
then T2 inherits the priority of T0.
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Priority inheritance in previous example

T3 inherits the 
priority of T1 

and T3 
resumes.

Previous

New
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Nested Critical Sections

π: used to denote priority
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Transitivity of Priority Inheritance
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Priority Inheritance Deadlock

T1

T2 b

a

b

T1:: ... lock(Sa); .a. lock(Sb); ... unlock(Sb) ... unlock(Sa);
T2:: ... lock(Sb); .b. lock(Sa); ... unlock(Sa) ... unlock(Sb);

P(Sa)

P(Sb)

P(Sb)

P(Sa)

π T1 > π T2: Priority of T1 > T2

Wednesday, 12 February 2014



Priority Ceiling Protocol

• The priority ceiling protocol prevents deadlock and reduces worst case blocking time

• Priority Ceiling (PC) of a resource or semaphore S:

•   PC(S) = highest priority of all processes that may lock S

• A process P is allowed to start a new critical section only if: P’s priority > PC’s of all 
semaphores locked by processes other than P 

•  If P is suspended, the process (say, Q) which holds the lock is blocking P

•  Q then inherits P ’s priority - execution then follows Priority Inheritance protocol

• A property of this protocol is that any process can be blocked for at most the duration 
of a single critical section of a lower-priority process 

• A significant gain

• Note assumes fixed  known number of tasks and prorities
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Example

 Consider three processes P1,P2,P3, s.t. πP1 > πP2 > πP3, with code:

   P1:: begin ... lock (S1); CS1; unlock(S1); ... end
   P2:: begin ... lock(S1); CS21; lock(S2); CS22; 
                  unlock(S2);CS23; unlock (S1); ... end
   P3:: begin ... lock(S2); CS3; unlock(S2); ... end

Run through execution sequence starting with just P3 starting first
 with P2 then  P1  entering  later

First look at standard priority inheritance

Then look at priority ceiling protocol
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Priority Inheritance delays critical task

P2

P3

P(S1)

P(S2)

P1

CS3

CS21
P(S2)

CS22 CS23

CS1

V(S2)

V(S1)

P(S1) V(S1)

V(S2)
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Priority Ceiling overcomes this

P2

P3

P(S1)

P(S2)

P1

CS21

P(S2)
CS22 CS23

CS1

V(S2)

V(S1)

P(S1) V(S1)

V(S2)

32

Priority Ceiling - Reduces Block Time

• Consider the example on Slide 24

– PC(S1) = max(πP1, πP2) = πP1

– PC(S2) = max(πP2, πP3) = πP2

P

P

P

t t t1

2

3

t

. . .
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s1
s s s s
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^
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suspend
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2

2

Priority ceiling blocking

mob@inf.ed.ac.uk Embedded Software (L11)t0 t1 t2 t3 t4

CS3
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Walk through of example

• At t0, P3 is ready & starts executing; at t1, P3 locks S2

• At t2, P2 preempts P3 (because π(P2) > π(P3))

• At t3, P2 attempts to lock S1; however, π(P2) ≯ PC(S2), which is currently locked by 
P3

• So, P2 is suspended (not allowed to lock S1), and P3 inherits P2’s priority and 
continues executing its CS

• At t4, P1 preempts P3 (because π(P1) > π(P3))

• When P1 attempts to lock S1 sometime later, it secures the lock, because π(P1) > 
PC(S2), the only other semaphore currently locked by another process

• When P1 finishes, P3 resumes, finishes its CS & unlocks S2, at which point, its 
priority reverts back to π(P3)

• P2 can then preempt P3 (because now, π(P2) > π(P3)) to obtain S2 & execute its 
critical section
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Priority Ceiling overcomes  deadlock

T1

T2 b

a

b

T1:: ... lock(Sa); .a. lock(Sb); ... unlock(Sb) ... unlock(Sa);
T2:: ... lock(Sb); .b. lock(Sa); ... unlock(Sa) ... unlock(Sb);

P(Sa)

P(Sb)

P(Sb)

π T1 > π T2: Priority of T1 > T2

P(Sa)
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Priority Ceiling Solution

T1

T2 bb

T1:: ... lock(Sa); .a. lock(Sb); ... unlock(Sb) ... unlock(Sa);
T2:: ... lock(Sb); .b. lock(Sa); .c. unlock(Sa) .d. unlock(Sb);

P(Sa)

P(Sb) V(Sb)

π T1 > π T2: Priority of T1 > T2

P(Sa)

c

V(Sa)

d

a
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Summary

• Scheduling dependent tasks

• Mutual exclusion 

• Priority Inversion

• Priority Inheritance

• Deadlock

• Priority Ceiling Protocol
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