
Lecture 10: Scheduling with priorities

Michael O’Boyle
Embedded Software

Wednesday, 12 February 2014

Overview

• Scheduling dependent tasks

• Mutual exclusion

• Priority Inversion

• Priority Inheritance

• Deadlock

• Priority Ceiling Protocol

• Summary

Wednesday, 12 February 2014

Resource access protocols

Critical sections: sections of code at which
exclusive access to some resource must be guaranteed.
Can be guaranteed with semaphores S or “mutexes”.

P(S)

V(S)

P(S)

V(S)

P(S) checks semaphore to see
if resource is available
and if yes, sets S to “used“.
Uninterruptible operations!
If no, calling task has to wait.

V(S): sets S to “unused“ and
starts sleeping task (if any).

Mutually
exclusive
access
to resource
guarded by
S

Task 1 Task 2

Note: Preemption still possible in critical sections

Wednesday, 12 February 2014

Blocking due to mutual exclusion

Priority T1 assumed to be > than priority of T2.
If T2 requests exclusive access first (at t0), T1 has to wait
until T2 releases the resource (at time t3):

For 2 tasks:
blocking is bounded by the length of the critical section

However not true in general

Wednesday, 12 February 2014

Priority inversion

Priority of T1 > priority of T2 > priority of T3.
T2 preempts T3:
T2 can prevent T3 from releasing the resource.

Blocking with > 2 tasks can exceed the length of any critical section
T2 not involved in critical section but ends up affecting T1

Wednesday, 12 February 2014

Solution: Forbid preemption in critical sections

T1

T2

T3

T1 has high priority but is blocked T1 independent of lock

P(S)

P(S)

P(S)

P(S)

V(S)

V(S)

Seems a good idea but leads to problems

Wednesday, 12 February 2014

Priority inheritance can help

§The idea is that if an important task is blocked by an
unimportant one,
§ the unimportant one is elevated and executed quickly

to release the lock
§Tasks are scheduled according to their active priorities.
§Tasks with the same priorities are scheduled.
§ First come first served. As usual

§Rule: tasks inherit the highest priority of tasks blocked
by it.

Wednesday, 12 February 2014

Priority inheritance can help

§Rule: tasks inherit the highest priority of tasks blocked
by it.

§ So if a task T1 executes P(S) & exclusive access already granted to T2, then T1 will
become blocked.

§ If priority(T2) < priority(T1): T2 inherits the priority of T1.

§ T2 resumes.

§ When T2 executes V(S), its priority is decreased to the highest priority of the tasks
blocked by it.

§ If no other task blocked by T2: priority(T2):= original value.
Highest priority task so far blocked on S is resumed.

§ Transitive: if T2 blocks T1 and T1 blocks T0,
then T2 inherits the priority of T0.

Wednesday, 12 February 2014

Priority inheritance in previous example

T3 inherits the
priority of T1

and T3
resumes.

Previous

New

Wednesday, 12 February 2014

Nested Critical Sections

π: used to denote priority

Wednesday, 12 February 2014

Transitivity of Priority Inheritance

Wednesday, 12 February 2014

Priority Inheritance Deadlock

T1

T2 b

a

b

T1:: ... lock(Sa); .a. lock(Sb); ... unlock(Sb) ... unlock(Sa);
T2:: ... lock(Sb); .b. lock(Sa); ... unlock(Sa) ... unlock(Sb);

P(Sa)

P(Sb)

P(Sb)

P(Sa)

π T1 > π T2: Priority of T1 > T2

Wednesday, 12 February 2014

Priority Ceiling Protocol

• The priority ceiling protocol prevents deadlock and reduces worst case blocking time

• Priority Ceiling (PC) of a resource or semaphore S:

• PC(S) = highest priority of all processes that may lock S

• A process P is allowed to start a new critical section only if: P’s priority > PC’s of all
semaphores locked by processes other than P

• If P is suspended, the process (say, Q) which holds the lock is blocking P

• Q then inherits P ’s priority - execution then follows Priority Inheritance protocol

• A property of this protocol is that any process can be blocked for at most the duration
of a single critical section of a lower-priority process

• A significant gain

• Note assumes fixed known number of tasks and prorities

Wednesday, 12 February 2014

Example

 Consider three processes P1,P2,P3, s.t. πP1 > πP2 > πP3, with code:

 P1:: begin ... lock (S1); CS1; unlock(S1); ... end
 P2:: begin ... lock(S1); CS21; lock(S2); CS22;
 unlock(S2);CS23; unlock (S1); ... end
 P3:: begin ... lock(S2); CS3; unlock(S2); ... end

Run through execution sequence starting with just P3 starting first
 with P2 then P1 entering later

First look at standard priority inheritance

Then look at priority ceiling protocol

Wednesday, 12 February 2014

Priority Inheritance delays critical task

P2

P3

P(S1)

P(S2)

P1

CS3

CS21
P(S2)

CS22 CS23

CS1

V(S2)

V(S1)

P(S1) V(S1)

V(S2)

Wednesday, 12 February 2014

Priority Ceiling overcomes this

P2

P3

P(S1)

P(S2)

P1

CS21

P(S2)
CS22 CS23

CS1

V(S2)

V(S1)

P(S1) V(S1)

V(S2)

32

Priority Ceiling - Reduces Block Time

• Consider the example on Slide 24

– PC(S1) = max(πP1, πP2) = πP1

– PC(S2) = max(πP2, πP3) = πP2

P

P

P

t t t1

2

3

t

. . .

t1 2 3 40

s1
s s s s

s

^

^

suspend
11 1

2

2

Priority ceiling blocking

mob@inf.ed.ac.uk Embedded Software (L11)t0 t1 t2 t3 t4

CS3

Wednesday, 12 February 2014

Walk through of example

• At t0, P3 is ready & starts executing; at t1, P3 locks S2

• At t2, P2 preempts P3 (because π(P2) > π(P3))

• At t3, P2 attempts to lock S1; however, π(P2) ≯ PC(S2), which is currently locked by
P3

• So, P2 is suspended (not allowed to lock S1), and P3 inherits P2’s priority and
continues executing its CS

• At t4, P1 preempts P3 (because π(P1) > π(P3))

• When P1 attempts to lock S1 sometime later, it secures the lock, because π(P1) >
PC(S2), the only other semaphore currently locked by another process

• When P1 finishes, P3 resumes, finishes its CS & unlocks S2, at which point, its
priority reverts back to π(P3)

• P2 can then preempt P3 (because now, π(P2) > π(P3)) to obtain S2 & execute its
critical section

Wednesday, 12 February 2014

Priority Ceiling overcomes deadlock

T1

T2 b

a

b

T1:: ... lock(Sa); .a. lock(Sb); ... unlock(Sb) ... unlock(Sa);
T2:: ... lock(Sb); .b. lock(Sa); ... unlock(Sa) ... unlock(Sb);

P(Sa)

P(Sb)

P(Sb)

π T1 > π T2: Priority of T1 > T2

P(Sa)

Wednesday, 12 February 2014

Priority Ceiling Solution

T1

T2 bb

T1:: ... lock(Sa); .a. lock(Sb); ... unlock(Sb) ... unlock(Sa);
T2:: ... lock(Sb); .b. lock(Sa); .c. unlock(Sa) .d. unlock(Sb);

P(Sa)

P(Sb) V(Sb)

π T1 > π T2: Priority of T1 > T2

P(Sa)

c

V(Sa)

d

a

Wednesday, 12 February 2014

Summary

• Scheduling dependent tasks

• Mutual exclusion

• Priority Inversion

• Priority Inheritance

• Deadlock

• Priority Ceiling Protocol

Wednesday, 12 February 2014

