
Coursework Feedback - Part 1

Björn Franke

Embedded Software

Overview

• Surveys

• Coursework Feedback

• General Considerations

• General Observations

• Common Problems

• PhD Positions

Surveys

Various Surveys

• National Student Survey (NSS), closes April 30, 2015

• Edinburgh Student Experience Survey (ESES), closes March 1, 2015

• Postgraduate Taught Experience Survey (PTES), closes June 15, 2015

• Postgraduate Research Experience Survey (PRES), closes May 14, 2015

www.ed.ac.uk/same-page

Undergraduate Surveys 2015

Two surveys for undergraduate students
now open

• National Student Survey (NSS)
• If you are an undergraduate in your FINAL year

• Edinburgh Student
Experience Survey
(ESES)

• If you are an
undergraduate
not yet in your
final year

Two surveys for undergraduate students
now open

What do the surveys cover?

• Teaching on programme
• Academic support
• Organisation & management
• Learning resources
• Assessment & feedback
• Personal development
• Overall experience

How are the findings used?

Your responses are vital – and we are listening!

• Previous findings have resulted in:

• Improvements to libraries, study and social spaces

• New assessment and feedback processes

• Student Information Points

• Peer Support initiatives

• Personal Tutors

Will my responses remain private?

• Yes, Ipsos MORI analyses the NSS
data and the University analyses the
Edinburgh Student Experience data

• All responses are confidential
• Individuals are not identified when

results are reported

How do I complete my survey?

• Check your University email – a
personalised URL has been sent to you

• Log in to MyEd – where you will see an
announcement and a link to your survey

• Final year students can also complete the
NSS survey on smartphones (go to
www.thestudentsurvey.com in your web
browser)

Incentives
By completing the survey you:

• Will be entered into a prize draw to win £100
Tesco vouchers, £20 Amazon vouchers

• Could win print credit at central promotional
events by completing your survey then and there

• And most importantly – you’ll help shape the
student experience!

www.ed.ac.uk/same-page

What matters to you?

Visit www.myed.ac.uk to complete
your survey today

http://www.myed.ac.uk/

Coursework Feedback

General Considerations

• Networked home security system (Internet of Things…)

• Security is paramount!

• Intruder might attack the security system

• Have you considered this?

• Reliability

• False alarm is annoying.

• Missing an alarm is catastrophic.

• How do you deal with a system crash?

• Maintainability/Extensibility

• Currently four sensors

• Could extend in the future. Have you considered this?

General Observations

• Poor documentation (comments)

• Try maintaining a large, undocumented SW project, or add some new
functionality to it!

• Poor C programming standards

• You will have to improve your C programming skills if you really want to
work in this area!

• Not particularly well tested systems

• Testing often takes as much time as implementation!

Defensive Programming

• Have you used static analysis tools, e.g. Lint?

• Pairwise programming?

• Code review?

• Designed test cases before implementation? Followed thorough test regime?

Comments

• Poorly commented code

• Lack of comments

• Quality of comments

• Better:

• Comment each function: what does it do? Is there anything special about
it (callback, interrupt handler)? What is the meaning of its parameters (any
assumptions)? What is its return value? Does it have side-effects/modify
state?

• Comment each data structure: what is it used for? Separate payload/
auxiliary fields (e.g. in linked list)

• Comment each variable if use is not immediately obvious and local: what
is used for?

• Comment all unusual functionality!

Insecure Code

• The basic rule of thumb is: "I'm not aware of all types of security exploits. I
must protect against those I do know of and then I must be proactive!”

• Apply this to your CW:

• Main vulnerability is web interface, in particular, CGI string parsing

• User might submit malicious request

External Attacks

• Attacker might submit invalid CGI query/parameters

• Too long

• Invalid time

• Not formatted according to expectations

• Denial of Service Attack

• Send requests at high frequency

Insecure Code Example

Bad:

Good:

More Insecure Code

Generally, check length of string before accessing it:

if (result[30] == ‘-‘) …

What if string contains less than 31 characters?

Code Duplication

• Copy&paste of time conversion code

• Possible errors multiplied. Might be missed if errors are detected and fixed

• Code size expansion! Waste of resources

• Better:

• Outline common code

• Write a function for time conversion and call whenever needed

Scalability Issues

int alarm1_activated;

int alarm2_activated;

int alarm3_activated;

int alarm4_activated;

…

This does not scale!

Better:

#define MAX_SENSORS

int alarm_activated[MAX_SENSORS]

More Scalability Issues

Horrible:

if (alarm_state1) {

// Do something
}
if (alarm_state2) {
// Do something

}
if (alarm_state3) {
// Do something

}
if (alarm_state4) {
// Do something

}

Better:

for(i = 0; i < MAX_SENSORS; i++)

{

if (alarm_state[i]) {

// Do something

}

}

More Code Duplication

• Copy&Paste of “press button callback”

• button1_callback, button2_callback, …

• All contain the same code

• Same problem as before, plus not scalable (think of 100’s of sensors/

buttons)

• Better:

• Combine functionality into a single callback function

• Deal with same functionality in a single block

• Grouping together (e.g. buttons 1-4 in a single switch/case block)

Scalability Issues/Code Duplication

void button1_pushed();

void button2_pushed();

void button3_pushed();

void button4_pushed();

 
Better:

void button_pushed(int button){

switch (button) {
case 1: …
case 2: …

default:…
}

}

Hardcoded Constants

if (action == 0) {

// do this
}
else if (action == 1) {
// do something different

}

Better:

typedef enum {GET_TIME, SET_TIME} action_t;
action_t action = …
if (action == GET_TIME) {
// do this

}
else if (action == SET_TIME) {
// do something different

}

Reading of RTC

time_T get_time() {

return t;

}

while (1) {

t = read_RTC(); // Read RTC periodically
// Do stuff

}

Better:

time_T get_time() {
return read_RTC(); // Read RTC on demand

}

PhD Positions

 PhD in
 Pervasive
Parallelism

Program

Apply

Verify

Specify

Design

Optimize

http://pervasiveparallelism.inf.ed.ac.uk

ARM iCASE Studentship

• “Profile-Directed Parallelisation of Sequential Legacy Applications”

• In collaboration with ARM Ltd., Cambridge

• ARM mentor, internships, access to technology

• Student eligibility requirements for EPSRC Industrial CASE funding are:

• A relevant connection with the UK, usually established by residence, and

• an upper second class honours degree, or a combination of qualifications

and/or experience equivalent to that level.

• This Studentship will cover tuition fees at the UK/EU rate and provide a tax-
free stipend at the EPSRC rate. Students receive funding for a full EPSRC
studentship for 3.5 years (currently ~£68,648).

• Contact: Björn Franke (bfranke@inf.ed.ac.uk)

mailto:bfranke@inf.ed.ac.uk

