
Embedded Systems Practical

Part 1

Björn Franke, Michael O'Boyle, Stan Manilov

University of Edinburgh – School of Informatics

ES Coursework 1 Handout 1/9

Introduction
Embedded processors are extremely prevalent in the modern world. They can be found in
everything from refrigerators to cars, and range in size from tiny PICs to the complex ARM
processors often found in mobile phones.

Of course, these processors must be programmed, typically using specialist tools and software, and
deeply embedded systems are frequently programmable only in C or assembly. The various devices
(such as analogue to digital converters, serial communication devices and display controllers) must
have drivers written before they are useful, and the multiple tasks running on the processor must be
scheduled – this is typically done by an RTOS (Real Time Operating System).

This coursework involves programming for a Freescale Kinetis K70 microcontroller, running under
the control of MQX, an RTOS developed by Freescale. The RTOS provides scheduling and device
drivers, as well as a number of libraries for network communication, graphical displays etc.

The coursework is broken into 4 milestones, the last of which is to develop a web controlled
security system, supporting multiple zones and wall clock scheduling for enabling/disabling each
zone. The first 3 milestones act as introductions to the tools and libraries you will need, and you
should aim to finish them as soon as possible. The coursework will be done in C. Each task should
be a separate project in its own directory..

Although this coursework is done in the C programming language, it is not intended specifically to
teach C, so you should make sure that you are familiar with at least the basics of the C
programming language.

Task 0 – Setting Up Your Environment
To compile programs for the K70 Tower, and download them into the Tower's memory, you will
need to use a number of special tools. In particular, you will be using the Freescale ARM toolchain
for compiling and linking programs, and OpenOCD to download them to the Tower and as a debug
interface.

These programs are located in a group space, at /group/teaching/espractical/Freescale, and
/group/teaching/espractical/OpenOCD. The OpenOCD directory contains a number of scripts which
can be used for setting up your DICE environment to use the Freescale toolchain, and to download
and debug programs running on the Tower. You should 'source' the setup script every time you start
working on the coursework:

source /group/teaching/espractical/OpenOCD/setup.sh

You should also ensure that you only connect the Freescale board to your DICE machine after you
have logged in, to ensure that the permissions to access the device are set up correctly. If you
encounter any 'Can't open OSBDM device' errors when attempting to use the flash or debug
scripts, disconnect and reconnect the board.

A project template is also available in /group/teaching/espractical/Template. This contains a simple
program which initialises the RTOS and network capabilities of the board, as well as a Makefile
which can be used to compile this project using the Freescale toolchain. If you wish, you can
attempt to set up a project in your IDE of choice although you will be responsible for getting this to
work.

ES Coursework 1 Handout 2/9

Task 1 – LED Control
The first task is to simply light an LED in response to a button press. This will introduce you to
programming using the MQX RTOS, and to the IO library used to interface with the touch buttons
and LEDs on the K70 board. The first part of this task is to make the LED constantly lit. This
should help familiarise you with using the RTOS, and with the flash and debug scripts. Your first
step should be to make a copy of the template project and place it in an 'ES' folder somewhere in
your AFS space.

Part 1 – LED Constantly On

You're now ready to start adding code to the project. Open up the 'main.c' file in your new copy of
the template in your favourite text editor. The first thing you need to do to control the LEDs is to
initialize the IO library used for controlling the touch buttons and the LEDs. The function to do this
is called _bsp_btnled_init() and it returns a HMI_CLIENT_STRUCT_PTR which is the passed to
the other IO functions.

When the init function is called, it will switch on all of the LEDs on the board. However, for this
part we only want one lit, so we need to switch off the other LEDs. The LEDs are controlled with
the btnled_set_value function, for example:

btnled_set_value(hmi_client, HMI_LED_1, HMI_VALUE_ON);

Can be used to switch on LED 1, and:

btnled_set_value(hmi_client, HMI_LED_3, HMI_VALUE_OFF);

Can be used to switch off LED 3.

Notice that this function takes several arguments: the variable containing the
HMI_CLIENT_STRUCT_PTR we created earlier, the LED we are interested in, and the value we
want to assign to it (on or off). Using this function, you should be able to switch off LEDs 2, 3 and
4 and complete the first part of this task.

To compile this code, open a terminal in the folder containing your project code. First of all,
'source' the 'setup.sh' script in the group space OpenOCD folder (described above):

source /group/teaching/espractical/OpenOCD/setup.sh

Now, run 'make' to compile your project. Although you will probably receive some warning
messages (relating to MQX standard library functions) you should now have a file called 'main'.
This is an ELF format binary file for the ARMv7-M architecture and is ready to be downloaded
onto the Tower, which is done using the flash script:

/group/teaching/espractical/OpenOCD/flash.sh main

Be patient: due to the interface used to talk to the board (JTAG) the download runs at only 2-3 KB/s
so it may take a couple of minutes. Once the program has downloaded, the Tower will automatically
restart and begin running your program (and the LEDs should behave appropriately). Try
experimenting with turning on and off various combinations of the LEDs.

Part 2 – LED On in Response to Button Press

The second part of this task is to light the LED in response to a button press. We will actually be
using capacitive touch pads around the LEDs (shown by the white rectangle around the LED on the
board) rather than the push buttons. The methods for handling buttons and touch pads are exactly
the same when using the IO library.

ES Coursework 1 Handout 3/9

Rather than have a function which detects each button press, the IO library allows us to register
callback functions which will be called when a button press is detected. This means we do not have
to individually check each button we are interested in continuously. We can register callbacks for
two button events: pushing the button, and releasing the button.

So, the first thing we need to do for lighting the LED in response to button presses is creating our
two button callbacks – one to switch on the LED when the button is pressed, and one to switch it off
when the button is released:

void button_push(void *ptr)
{

btnled_set_value(hmi_client, HMI_LED_1, HMI_VALUE_ON);
}

void button_release(void *ptr)
{

btnled_set_value(hmi_client, HMI_LED_1, HMI_VALUE_OFF);
}

Notice that the callback functions take a single argument (void *ptr) which can be used to pass
information into the callback (such as which button has been pressed), and they return void (i.e.
nothing).

We now need to register the two button callbacks. This is done using the btnled_add_clb function.
This function takes several arguments: the HMI_CLIENT_STRUCT_PTR from earlier, the button
we are interested in, the button event we are interested in (pressing or releasing), the callback
function to register, and the argument to pass to it (we pass NULL since we are not interested in
passing a value):

void Main_task(uint_32 initial_data)
{

btnled_add_clb(hmi_client, HMI_BUTTON_1, HMI_VALUE_PUSH, button_push, NULL);
btnled_add_clb(hmi_client, HMI_BUTTON_1, HMI_VALUE_RELEASE, button_release,

NULL);
}

We now need to poll the library. Polling involves repeatedly asking the library if it has encountered
any button presses. To do this, we repeatedly call the btnled_poll() function:

void Main_task(uint_32 initial_data)
{

...
while(1) btnled_poll(hmi_client);

}

Submission

Both parts of this task should be demonstrated by 6PM, Friday 12th February. All associated code
should also be submitted by this time. Submission can be done using the submit command:

submit es 1 [directory containing task 1]

ES Coursework 1 Handout 4/9

Task 2 – Web Server
The K70 microcontroller board is attached to a device board containing a serial port and an ethernet
port. The MQX RTOS has built-in support for using the ethernet port, both to send and receive
TCP/IP traffic and as a full HTTP server. For this part of the coursework, you will be using the
HTTP server capability, as well as a serial port over USB.

Part 1 – Send Static Web Page Over HTTP

For this part of the coursework we will set up an HTTP server on the board and serve a static web
page. We will need to insert the web page into a file system on the device (which we will also need
to initialize), then tell the RTCS library to set up and run a web server with that page as the index
page. Please note: if you are combining RTCS features with the btnled library used earlier, you will
need to ensure that the call to rtcs_init() is AFTER the call to _bsp_btnled_init.

The first thing to do here is to create the web page which will be hosted. We only want a simple
'hello world' style page at the moment. The web page will be stored in an in-memory file system,
and we will then instruct the HTTP server on the board to use this file system as a source of pages.
In order to use the TFS (Tiny File System) and HTTPD features provided by MQX and RTCS, we
will need to #include two additional files: tfs.h and httpd.h.

To populate the file system, we provide it with an array of structs representing files. For example:

unsigned char http_refresh_text[] = "Hello World!";
const TFS_DIR_ENTRY static_data[] = {

{ "/index.html", 0, http_refresh_text, sizeof(http_refresh_text) },
{0,0,0,0}

};

Represents a simple file system containing a file called 'index.html', with no flags set, using the
'static_page' string as its contents and being 'sizeof(static_page)' bytes long. The {0,0,0,0} is an
empty entry used to indicate the end of the array.

Once we have our file system specified, we need to install it. We can do this using the
_io_tfs_install function. This takes two arguments: where in the file system to install, and what we
are trying to install. So, to install our filesystem above, we use:

_io_tfs_install("tfs:", static_data);

We can now initialize and start our http server. To initialize the http server, we use the function
httpd_server_init_af, which takes several arguments: a root directory, an index page, and an IP
protocol type and returns a structure of type HTTPD_STRUCT*. We need another struct to form
our root directory, which simply points to the file system we set up earlier:

static HTTPD_ROOT_DIR_STRUCT http_root_dir[] = { {"", "tfs:"}, { 0,0 } };

Then we can initialize the http server:

http_server = httpd_server_init_af(http_root_dir, "\\index.html", AF_INET);

Once the http server is initialized, we need to run it:

httpd_server_run(http_server);

Much like the btnled system used in Task 1, we need to poll the ethernet device to service requests.
Much like we used a btnled_poll() function for this previously, we now need to use another
function, ipcfg_task_poll():

ES Coursework 1 Handout 5/9

while(1) ipcfg_task_poll();

One more step before you test your web page is to configure the network settings on the board. If
you look in the 'main.h' file you will see 3 #define lines containing uses of the IPADDR macro. We
need to change the IP addresses in the macros to configure the board. For the top one
(ENET_IPADDR), enter the IP address your pair was assigned (with commas instead of full stops).
For the middle one, enter 255,255,255,0. For the last one (ENET_GATEWAY) enter
192.168.105.250.

Now build and download your project.

Submission

This task should be demonstrated by 6PM, Friday 12th February. All associated code should also be
submitted by this time. Submission can be done using the submit command:

submit es 1 [directory containing task 2]

Make sure that this is a different directory name to task 1, or your submission will be
overwritten! For more info on submissions, see below.

Task 3 – Real Time Clock
One of the hardware devices on the K70 board is a RTC (Real Time Clock) module. This module
keeps track of the current real world time, in seconds, since it was last reset. This task involves
configuring and displaying the value of the RTC using a web server running on the K70 board.

Part 1 – CGI Request

First, we will try lighting an LED when a web page is accessed. This will demonstrate how to set up
the CGI system on the board. Setting up the CGI system is very similar to setting up the standard
HTTP server, except that rather than assigning text strings containing HTML to page names, you
assign function callbacks. In addition, the CGI system automatically appends “.cgi” to filenames,
so for example, if you use the cgi table below, to access the LED toggle function you should
navigate to '192.168.105.xxx/led.cgi?some_led_number'.

So, first we should create the CGI functions we plan on calling when pages are accessed. The CGI
functions can view any data attached to the page URL and send back data to the browser, allowing a
CGI request to both input and output data. For example:

_mqx_int led_callback(HTTPD_SESSION_STRUCT *session)
{

int led = atoi(session->request.urldata);
httpd_sendstr(session->sock, "<html><body>LED toggled</body></html");
btnled_toogle(hmi, HMI_GET_LED_ID(led));
return session->request.content_len;

}

(Notice the function btnled_toogle – this is not a typo in this document, it is a typo in the MQX
API. These kinds of errors are extremely difficult to remove once this kind of code is used in the
real world!)

As you can see, the httpd_sendstr function is used to send text back to the browser. Notice the
function signature and return value – to ensure that the request is handled correctly, these must be
correct. Once we have our CGI function written, we need to add it to a table, similarly to how we
registered static web pages:

ES Coursework 1 Handout 6/9

static HTTPD_CGI_LINK_STRUCT http_cgi_params[] = { { "led", led_callback }, {0,0}};

We also need to register this table with the http server:

HTTPD_SET_PARAM_CGI_TBL(http_server, http_cgi_params);

Note that in order for the light toggling to work, the _bsp_btnled_init() call must be BEFORE the
rtcs_init() call.

Part 2 – Get Value Of RTC

Now you need to setup the RTC and output its value when a CGI request is received. Setting up the
RTC is simple: simply call the _rtc_init() function with a certain flag:

_rtc_init(RTC_INIT_FLAG_ENABLE);

Now, in order to get the time from the rtc, call the function _rtc_get_time(). This function does not
return the time directly, but rather it puts the current time into a struct which you provide the
address of:

RTC_TIME_STRUCT curr_time;
_rtc_get_time(&curr_time);

RTC_TIME_STRUCT contains a single field called ‘seconds’, which represents the seconds
elapsed since time zero and can be greater than 59. You would need to convert between this
representation and representing the time in hours, minutes, and seconds. In order to format the time
into a string you will need to use the sprintf() function. This function is used to format data and
present it as text. For example, to display the time:

char buffer[32];
sprintf(buffer, "%u:%u:%u\n", hours, minutes, seconds);

(This is actually a rather inefficient way of formatting the time since printf functions are very
expensive in both time and stack space. However, we have a fairly powerful core and a lot of
memory so it's not such an issue here).

You first need to define a destination array for the formatted text. You need to make sure that it is
long enough to contain the full string. Often a modified version of sprintf, snprintf, is used instead,
which will only write out a specified number of characters. A sprintf call to a too-short buffer can
often be used as the vector for a buffer overflow attack, which can be avoided by using snprintf.
Once you have the time correctly formatted, you can send it out in response to a CGI request by
using the httpd_sendstr function call:

httpd_sendstr(session->sock, buffer);

Part 3 – Set Value Of RTC

You should now create and register a new CGI callback which allows the user to specify the time.
The user should be able to specify the current time on a static or CGI-provided web page, and have
that time written to the RTC. Writing a new value to the RTC is quite simple: You create a struct to
contain the new time, set the value of it to the new time, and then pass it to the _rtc_set_time
function:

RTC_TIME_STRUCT the_new_time;
the_new_time.seconds = 1000;
_rtc_set_time(&the_new_time);

Similarly to how sprintf was used to output text, you can use sscanf:

ES Coursework 1 Handout 7/9

int hours,minutes,seconds;
sscanf(session->request.urldata, "%u:%u:%u", &hours, &minutes, &seconds);

Using these functions, you should be able to allow the user to set and view the time on the real time
clock using a web form.

Submission

All three parts of this task should be demonstrated by 6PM, Friday 12th February. All associated
code should also be submitted by this time. Submission can be done using the submit command:

submit es 1 [directory containing task 3]

Make sure that this is a different directory name to tasks 1 and 2, or your submission will be
overwritten! For more info on submissions, see below.

Task 4 – Security System
You should now have all of the knowledge that you need to create the full security system. You
should aim to use several MQX tasks for this. Although it is not strictly necessary, if you use only a
single task you will end up with some rather messy code. Details on the MQX task system can be
found in the MQX documentation.

Part 1 – The Basic Security System

The basic implementation of the security system should use the four capacitive touch sensors to
represent motion sensors, and the four LEDs attached to them to represent the alarms – each
sensor/LED represents one room. The two push buttons should represent buttons to enable/disable
the alarm, and to hush the alarm if it is set off. When the alarm is enabled, the four LEDs should be
lit, and when a sensor is triggered, the LED attached to it should flash. Remember that you will
need to reference the “tss.a” library, as you did at the beginning of Task 1.

Part 2 – Web Control

The user should be able to enable/disable and hush the security system via a web interface using the
HTTP and CGI server on the board. In addition, the user should be able to enable/disable each
sensor independently – when a sensor is enabled, the LED should be on. When the sensor is
disabled, the LED should be off. If a sensor is disabled, the alarm in that room cannot be triggered.
The web interface does not have to be flashy or complex, simple static pages are fine.

Part 3 – Timing Control

The user should be able to specify the time at which each alarm zone is enabled/disabled
independently using a web interface. The user should also be able to set and view the current time.

Submission

The entire of Task 4 (all three parts) should be demonstrated, and have code submitted, by 6PM,
Friday 19th February. Submission can be done using the submit command:

submit es 1 [directory containing task 4]

Make sure that this is a different directory name to tasks 1, 2, and 3, or your submission will
be overwritten! For more info on submissions, see below.

ES Coursework 1 Handout 8/9

Submission
Submission is done using the DICE submit command. You can either submit each task individually
(as shown in each task’s ‘Submission’ section) or submit them all at once. In any case, your
coursework should be laid out as follows:

~
ES

Task 1
... files for Task 1 ...

Task 2
... files for Task 2 ...

Task 3
... files for Task 3 ...

Task 4
... files for Task 4 ...

You can then either submit each task individually, or the entire ES folder at once. If you have any
questions about submissions, please email the TA.

References
A lot of Freescale documentation links can be found on the ES website.

The TA, Stan Manilov, can be contacted at S.Z.Manilov@sms.ed.ac.uk or during the weekly lab
sessions (Wednesday 2pm - 4pm and Friday 4pm - 6pm).

ES Coursework 1 Handout 9/9

mailto:S.Z.Manilov@sms.ed.ac.uk

	Embedded Systems Practical
	Part 1

	Introduction
	Task 0 – Setting Up Your Environment
	Task 1 – LED Control
	Part 1 – LED Constantly On
	Part 2 – LED On in Response to Button Press
	Submission

	Task 2 – Web Server
	Part 1 – Send Static Web Page Over HTTP
	Submission

	Task 3 – Real Time Clock
	Part 1 – CGI Request
	Part 2 – Get Value Of RTC
	Part 3 – Set Value Of RTC
	Submission

	Task 4 – Security System
	Part 1 – The Basic Security System
	Part 2 – Web Control
	Part 3 – Timing Control
	Submission

	Submission
	References

