ES Coursework Part 2

February 29, 2016

1 Introduction

Having completed the first coursework, you should be familiar with the prin-
ciples of programming for embedded systems, working with the K70 boards,
and programming with MQX. In this coursework you will be programming for
a bare metal system (i.e., one which is not running an RTOS).

The main objective of the coursework is to produce a configurable audio
filter system. Audio data (in this case, signed 8-bit PCM audio at 8000Hz) will
be fed into the virtual serial port on the board, filtered using a selectable band-
pass filter, and then sent back over the serial port. The audio bitrate is kept
low in order to fit within the data rate of the serial port. You should implement
four different band pass filters, and allow the user to cycle between them at any
time by using the two push-buttons next to the LED array. The LEDs should
indicate which filter is currently selected.

Completing this coursework will require writing drivers for several hardware
devices, and then using these drivers to implement the audio filter. Most of the
information on the hardware devices can be found within the provided docu-
mentation. You may need to do some additional research or experimentation in
order to obtain an understanding of how the various devices work.

When completing this coursework, you should try to be mindful of code size,
energy usage, and performance. Your solution must be able to filter the input
signal in real time or better and should not make use of excessively sized buffers
or other temporary storage. When implementing the filter, you may choose to
use floating point arithmetic and the floating point unit, or to use fixed point
arithmetic and the DSP-like instructions provided by the Cortex-M4F MCU.

It is recommended that you work on each component of your system sepa-
rately. For example, you may wish to create the UART driver and ensure that
it is working before you move on to attempting to use the push-buttons (or
vice-versa). You should also make use of multiple source and header files in
order to keep your work organized.

The reference documentation for this part of this coursework is located in
/group/teaching/espractical/Part2/Documentation/.



2 Bare-metal Development

Developing for a system not running any kind of OS or RTOS is known as
"bare-metal’ development. This poses some challenges and problems which do
not exist when programming for an RTOS such as MQX or a full OS such as
Linux. Many features provided in an RTOS (such as hardware drivers and task
management) do not exist in a bare metal environment.

The top board of the Freescale Tower features a Freescale K70 System-on-
Chip, which contains an ARM Cortex-M4F Microcontroller along with some
SRAM and many hardware devices. The Cortex-M4F implements the ARMv7-
M Architecture and features a floating point unit and some DSP-like extension
instructions. For more information about the K70 SOC, refer to K70 Reference
Manual.pdf in the documentation directory.

2.1 Interrupts and Exceptions

Interrupts and exceptions are used to communicate synchronous events (such as
memory access errors) and asynchronous events (such as messages from devices)
to the core. Interrupts and exceptions typically execute in a slightly different
environment to normal user code - for example, it may execute with an increased
privilege level (allowing access to OS Kernel memory areas) or using a different
stack.

Interrupts are usually passed to a core from a separate (but closely con-
nected) interrupt controller. In the case of the Cortex-M4, the interrupt con-
troller is known as the NVIC - the Nested Vectored Interrupt Controller. This
indicates that the controller can handle nested interrupts (i.e., an interrupt can
be taken while a lower priority interrupt handler is executing) and that the in-
terrupt vectors (the addresses of interrupt handlers) are provided to the core by
the interrupt controller, rather than having the core look them up itself. These
two features allow interrupts to be handled extremely efficiently.

The NVIC is configured by reading/writing to specific memory locations.
A separate table, the Vector Table, is kept elsewhere in memory. Although
the NVIC supports having the location of this table change at runtime, it is
recommended that you leave the table at its default location (address 0). Note
that this places the vector table in flash memory, which cannot be easily modified
at runtime. The first 16 vectors are used for exceptions, and subsequent vectors
are for external interrupts. Interrupts can be enabled/disabled individually, and
can also be prioritized.

For more information about the NVIC, see the ARMv7-M Architecture
Reference Manual.pdf, page 750. For more information about the ARMvT7-
M Exception Model, see the ARMv7-M Architecture Reference Manual.pdf,
page 631.



2.2 Devices

Devices are typically configured via two channels - by mapping configuration
and status registers into regions of memory (memory mapped I/0), or by using
special instructions to configure devices. For the Cortex-M4, most devices are
configured via memory mapped I/O. Freescale provide a header file containing
C macros and struct definitions which can be used to access many of the device
registers available on the MCU and it is recommended that you use this rather
than accessing the devices directly. For more information on some of the devices
you might use in this coursework, see Section 3.

2.3 The Core at Reset

When the core is powered up or reset in any way, after performing some inter-
nal initialization it performs a Reset Exception. This is essentially the point
at which our code begins to execute - in the Reset Exception Handler. The
core loads an initial stack pointer from address 0, loads the address of the Reset
Handler from address 4, and then jumps to the Reset Handler. Since we’re pro-
gramming in C, the C library we are using provides some code to do initial setup
of the core, so the reset handler should be __thumb_startup. __thumb_startup
will call init_hardware() (where the core can be configured, devices initialised
etc), and then eventually call main().

In order to present a consistent and safe environment to code running on
the core, many of the features provided are initially disabled. For example, the
FPU is disabled, interrupts are disabled etc. If you wish to use any of these
features, you must enable them using the relevant mechanisms.

3 Hardware Components

3.1 Clock Management

In order to save energy, many systems support a technique known as clock
gating. This allows the core to disable individual devices, or groups of devices,
by disabling the clock signal which is driving those devices. The K70 device
starts up with all non-core clocks disabled, so before using any device, the
associated clock must be enabled.

In addition, it may be desirable to increase or decrease the frequencies of the
various clock signals in use, in order to improve performance or save power, or
to allow timing critical components to function at all. The K70 contains several
Phase-Locked-Loop and Frequency-Locked-Loop devices which can be used to
generate clock signals at a variety of frequencies. However, for this coursework
it is recommended that you use the external oscillator from the Ethernet board
which is locked at 50MHz.

The clocks are controlled using two devices - the System Integration Module,
and the Multipurpose Clock Generator. For more information on these two
devices, see the K70 Reference Manual, pages 319 and 633 respectively.



3.2 Pin MUXing

Although modern microcontrollers have access to a large number of internal
devices and device controllers, they are frequently extremely constrained when
it comes to the number of external wires, or ‘pins’, available. Certain types of
device such as external RAM and buses frequently use large numbers of pins,
as they require parallel address and data wires in order to provide acceptable
performance.

Although it is possible for multiple active devices to share pins, this is often
undesirable as it complicates the use of these devices (as the pin mux config-
uration must be reset for each access to a particular device). For this reason,
pins are assigned to devices by the system designer in such a way that most
applications are able to avoid pin sharing.

For this coursework you will only be using a small number of devices which
use external pins, so you will not need to manage pin sharing. However, you
will still need to ensure that the devices you are using have the relevant pins
MUXed correctly.

Pin MUXing is controlled using the PORT devices. These must have their
clocks enabled prior to use. There are 6 PORT devices, each one responsible
for a different group of pins. For more information on the PORT device, see the
K70 Reference Manual, page 299. For information on which pins are assigned
to each device, see the table starting on page 275.

3.3 GPIO

The GPIO (General Purpose Input/Output) device is used to 'read’ and "write’
to physical pins. This can be used to implement communications protocols in
software or to control external devices. For this coursework, you should use
the GPIO device to light the LEDs in the capacitive touch panels in order to
indicate which of the audio filters is currently selected.

There are 6 GPIO devices, one per port. They share clocks with their
associated PORT device. For more information on the GPIO devices, see the
K70 reference manual, page 2147.

3.4 UART

The UART (or Univeral Asynchronous Receiver/Transmitter) is a serial com-
munications device. The UART is ‘Universal’, in that it can be configured with
a wide variety of data format and transmission speeds, and is ‘asynchronous’,
meaning that the sender and reciever do not share any kind of clock signal. In a
standard configuration of 8 data bits, 1 stop bit, and no parity (known as 8N1),
the effective data rate (in KB/s) is 1/10th of the selected Baud rate. This means
that for 8-bit, 8000Hz audio (62.5Kb/s or 7.8KB/s) a rate of at least 78000 baud
is required - the closest standard baud rate above this is 115200.

Using UART devices is fairly straightforward when communicating with se-
rial ports. Typically it is only necessary to enable the UART device, ensure that



the correct baud rates are selected on the transmit and receive sides (i.e., on
the UART device and on the serial port it is connected to), and then write data
to the UART’s data register to transmit, and read data from the UART’s data
register - when data is available - to receive. Modern UART devices feature
FIFO buffers in order to allow for more time for the core to do other things be-
tween servicing the UART. Although many serial interfaces implement complex
control protocols, in this case we are using only the TX and RX lines.

For more information on the UART device, see the K70 reference manual,
page 1885.

3.5 PIT

The PIT (Periodic Interrupt Timer) is a device used to deliver interrupts to the
core at a given, programmable interval. This device can be used to, for example,
poll for changes in another device. The PIT timer continues even while the core
is in low power modes, making it useful for low power timers.

For more information on the PIT, see the K70 Reference Manual, page 1353.

4 Audio Filtering

For this coursework, you will be implementing a variety of band pass filters.
Since this is not a digital signal processing course, you do not need to understand
exactly how these filters work or are created. Instead, we recommend that
you use a tool such as that found at http://www.micromodeler.com/dsp/ in
order to find out how these filters can be implemented. Importantly, you must
implement a streaming filter i.e. a filter which receives and processes one sample
at a time. A simple l-order filter is sufficient.

A bandpass filter takes a signal as its input, and produces a signal where
components of the signal outside of the given band are attenuated (i.e. made
‘quieter’). A perfect filter would completely remove from the input signal any
component which is outside of the pass band. However, this is not typically
achievable - for example, examine the frequency response curve in Figure 1.
Although the desired pass band of the filter is 1000Hz-1500Hz, note that the
response at 800Hz (i.e., 0.1) is not zero. The frequencies at which the filter
attenuates the input signal by -3dB (i.e., to approximately 70%) are known as
the ‘corner frequencies’. You should use a tool (such as that described above)
in order to generate filters with the properties described in Table 1.

Filter Low Frequency High Frequency

1 500Hz 1000Hz
2 1500Hz 1750Hz
3 2000Hz 2500Hz
4 3000Hz 3750Hz

Table 1: Corner frequencies to be used in the band-pass filters



1.0 - +pi

0.0 T T T T T T T T T —pi
o0 00s A0 045 020 0,25 0,30 0,35 o040 045 Q.80

Figure 1: The response curves for a simple band pass filter. The filter passes
1000Hz-1500Hz of an 8000Hz signal and is of order 4. The X Axis represents the
frequency of the input signal. The Y Axis on the left and red curve represent the
filter response (i.e., a response of 1.0 indicates that the amplitude of the output
signal is the same as that of the input signal, and a response of 0.5 indicates
that the amplitude of the output would be halved), and the Y Axis on the right
and blue curve represent a phase offset applied to the output signal.



5 Provided Resources

In order to help you get started with the coursework, and to help you test your
solution, we have provided an example bare metal program (which can also
serve as a template), as well as a number of example audio files to be filtered,
and scripts to send these files to the K70 board and record the response.

5.1 The Example

As with the first coursework, we have provided a small example project which
can be used as a template. This project consists of the following files:

1. bareboard_flash.lcf - A linker script, which describes how the program
should be laid out in memory

2. led. [ch] - A simple set of functions for accessing the LEDs on the board.

3. main.c - A program which sets up the board, then uses the provided LED
library to flash the red and blue LEDs.

4. Makefile - A GNU Makefile for building the example. If you add addi-
tional C source files to your project, you will need to insert their names
into the relevant part of this file.

5. MK70F12.h - A header file containing macros allowing you to access all of
the devices provided by the K70. You don’t need to read all of this file,
but you should look at the macros used elsewhere in the template to see
what they actually do.

6. vectors. [ch] - Files containing the Exception Vector table definition and
some configuration options.

You will still need to source the setup.sh file in (/group/teaching/espractical/
Open0OCD/setup.sh) as before prior to building the example program (or any
program based on it).

5.2 Test Audio Files

So that you are able to test your filters, we have provided a number of audio
files containing tones at various frequencies, as well as frequency 'sweeps’ which
containing tones starting at low frequencies and rising to higher frequencies
over time. These are encoded as signed 8-bit, 8KHz Wav files. We have also
provided scripts for converting from Wav files to raw audio files suitable for
transmission onto the board, and vice-versa, as well as sending data to the
board and recording the response, as described below.

The test audio files are available in /group/teaching/espractical/Part2/
AudioSamples.



5.3 Scripts

The setup.sh, flash.sh, debug.sh and console.sh scripts are all still avail-
able and should be used for setting up a build environment, flashing programs
to the board, debugging programs on the board and viewing text UART output.
Note that once you are sending/receiving audio files over the UART you will no
longer be able to print debug messages over it!

Three additional scripts are also provided. The first, pipe.sh, sends a file
over the UART connection to the board, and records the response. You should
use this script to test your audio filter program. Note that this script assumes
a baud rate of 115200 on the K70’s UART.

The second, wav2raw.sh, converts a .wav audio file into a signed 8-bit PCM,
8KHz RAW audio file suitable for sending to the board. The third script,
raw2wav.sh, converts back from a signed 8-bit PCM, 8KHz RAW to a similarly
encoded .wav file.

All of the scripts are available in /group/teaching/espractical/Part2/
Scripts.

5.4 Documentation

There are two main sources of documentation for this coursework (alongside
this handout). The one you are likely to refer to the most is the K70 Reference
Manual. This document describes the K70 device in detail, including some
information on the Cortex-M4F core it contains and the devices and peripherals
attached to it. Although the manual is quite long (and intimidating!) at 2259
pages, you will likely only need to refer to the sections mentioned in this handout.

The second document you might refer to is the ARMv7-M Architecture
Reference Manual. This document is produced by ARM Holdings and primarily
contains a low-level description of the ARMv7-M Architecture (such as the
various instructions, how interrupts and exceptions are handled etc.).

One final document provided is the K70 Tower Board Reference Manual.
This describes the Freescale Tower System board on which the K70 device is
mounted. This document contains information such as which GPIO pins the
LEDs are attached to, which TSI sensor channels are enabled etc.

All of the documentation is available in /group/teaching/espractical/
Part2/Documentation.

6 Submission

The coursework should be submitted using the submit system, by March 25th,
6PM. You should include a readme file indicating how your solution is struc-
tured.

submit es 2 es_part_ 2/



