ES Coursework 1
Agenda

1. Brief overview of coursework
2. Introduction to hardware/software being used
3. Information on 4 tasks to be completed
4. Lab info
5. Submission
1. Overview

- Coursework consists of programming for an embedded device running an RTOS
- First three tasks are introductory – these should be straightforward (most of the code you need is provided)
- Final task is more freeform and you may need to consult documentation on some features
- Final submission is by demonstration, although code should also be submitted
- This coursework is worth 12.5% of your final mark
2. K70 Board

- Part of the Freescale Tower System
- K70 SOC contains:
 - ARM Cortex-M4F Core
 - Flash Memory
 - DRAM
 - Many peripherals (UART, Memory Controllers...)
- Fairly powerful for an embedded device
- Lots of memory – usually this is a constraint in embedded systems
2. MQX

- RTOS ported to various Freescale devices
- Contains standard library and drivers for many devices
- Lots of useful features and fairly easy to use
2. Freescale Toolchain

- Based on Metaware compiler – behaves differently to GCC!
- We're using the ARM backend (not surprisingly)
- Command line interface – A simple Makefile is provided – Could be wrapped by an IDE but you will need to do this yourself!
- Scripts are also provided for communicating with the board using OpenOCD (for flashing/debugging) [/group/teaching/espractical/OpenOCD/*]
3. Coursework Tasks

- Three easy tasks
 - Blink some LEDs
 - Set up the network interface/HTTP server
 - Set/display the Real Time Clock over HTTP

- One longer task: Security system
3. Task 1 - LED Control

- Mainly a 'getting started' task
- Introduction to using the board
- Two parts
 - LED constantly on
 - LED on in response to button press
3. Task 2 - Web Server

- MQX has a built in network stack including an HTTP server
- This task involves serving a static web page over the network connection
- Only one part
 - Serve static web page
3. Task 3 - Real Time Clock

- K70 board includes an accurate Real Time Clock module
- This task involves configuring and displaying the value of the RTC using the web server
- Three parts
 - Handling CGI requests in MQX
 - Display the value of the RTC over HTTP
 - Set the value of the RTC over HTTP
3. Task 4 - Security System

- Much longer task – create a web-controlled security system running on the board
- Touch sensors represent sensors, LEDs represent alarms
- Each sensor/LED represents a different room
3. Task 4, Part 1 - Basic System

- Capacitive touch buttons represent motion sensors
- LEDs represent alarms
- Push buttons used to switch the alarm on or off, and stop the alarm if it has gone off
- When a touch button is pressed, the attached LED should flash
3. Task 4, Part 2 - Web Control

- Builds on Part 1
- The user should be able to
 - Switch on/off the alarm via the web interface
 - Stop the alarm if it is going off
 - View the current status of each room
 - Individually enable/disable the sensor for each room
3. Task 4, Part 3 - Timing Control

- Builds on Part 2
- The user should be able to
 - Use the web interface to view and set the current RTC value
 - Set times at which each alarm zone is enabled/disabled (or have a zone always enabled, or never enabled)
4. Labs

- The boards are in 1.B31 and can only be connected to the free network ports in this lab
- Boards and cables are in brown lockers in the corner of 1.B31 and should not be removed from the lab
- Labs are in 1.B31 running
 - Wednesday 14:10 – 16:00
 - Friday 16:10 – 18:00
- Some of the boards are failing: try with another one if you seem to have an obscure error
4. Groups

- Due to hardware restrictions you need to work in pairs
- Form pairs, choose a preferable lab slot, and send an email to the TA by the end of today (Monday, 23th)
- Otherwise you will be assigned a buddy and a slot automatically
- Try to go to your allocated slot, but if for some reason you cannot, you can go to the other lab, as long as there are free computers/ports
- Labs are just for asking questions and getting help - feel free to work on the coursework in your own time
5. Submission

- The first three tasks due 6PM February 10th
- Final task is due 6PM February 17th
- Submission consists of a demonstration during the lab, plus submission of code using submit system