Agenda

- Brief overview of coursework
- Introduction to hardware/software being used
- Information on 4 tasks to be completed
- Lab info
- Submission
Overview

- Coursework consists of programming for an embedded device running an RTOS
- First three tasks are introductory – these should be straightforward (most of the code you need is provided)
- Final task is more freeform and you may need to consult documentation on some features
- Final submission is by demonstration, although code should also be submitted
K70 Board

• Part of the Freescale Tower System
• K70 SOC contains:
 – ARM Cortex-M4F Core
 – Flash Memory
 – DRAM
 – Many peripherals (UART, Memory Controllers…)
• Fairly powerful for an embedded device
• Lots of memory – usually this is a constraint in embedded systems
MQX

- RTOS ported to various Freescale devices
- Contains standard library and drivers for many devices
- Lots of useful features and fairly easy to use
Freescale Toolchain

- Based on Metaware compiler – behaves differently to GCC!
- We're using the ARM backend (not surprisingly)
- Command line interface
 - A simple Makefile is provided
 - Could be wrapped by an IDE but you will need to do this yourself!
- Scripts are also provided for communicating with the board using OpenOCD (for flashing/debugging)
Coursework Tasks

- Three easy tasks:
 - Blink some LEDs
 - Set up the network interface/HTTP server
 - Set/display the Real Time Clock over HTTP

- One longer task
 - Security system
Task 1 – LED Control

• Mainly a 'getting started' task
• Introduction to using the board
• Two parts:
 – LED constantly on
 – LED on in response to button press
Task 2 – Web Server

- MQX has a built in network stack including an HTTP server
- This task involves serving a static web page over the network connection
- Only one part:
 - Serve static web page
Task 3 – Real Time Clock

- K70 board includes an accurate Real Time Clock module
- This task involves configuring and displaying the value of the RTC using the web server
- Three parts:
 - Handling CGI requests in MQX
 - Display the value of the RTC over HTTP
 - Set the value of the RTC over HTTP
Task 4 – Security System

- Much longer task – create a web-controlled security system running on the board
- Touch sensors represent sensors, LEDs represent alarms
- Each sensor/LED represents a different room
Task 4, Part 1 – Basic System

- Capacitive touch buttons represent motion sensors
- LEDs represent alarms
- Push buttons used to switch the alarm on or off, and stop the alarm if it has gone off
- When a touch button is pressed, the attached LED should flash
Task 4, Part 2 – Web Control

• Builds on Part 1

• The user should be able to:
 – Switch on/off the alarm via the web interface
 – Stop the alarm if it is going off
 – View the current status of each room
 – Individually enable/disable the sensor for each room
Task 4, Part 3 – Timing Control

- Builds on Part 2
- The user should be able to:
 - Use the web interface to view and set the current RTC value
 - Set times at which each alarm zone is enabled/disabled (or have a zone always enabled, or never enabled)
Labs

- The boards are in AT3.01 and can only be connected to specific network ports in this lab.
- Boards and cables are in lockers at the back of AT3.01 and should not be removed from the lab.
- Labs are Wednesday 14:10 – 16:00 and Friday 16:10 – 18:00 in AT3.01. A lab signup email was sent out a couple of weeks ago but there is some flexibility.
Submission

- The first three tasks due 4PM February 13th
- Final task is due 4PM March 19th
- Submission consists of a demonstration during the lab, plus submission of code using submit system