Subtyping and Contravariance

Consider the following Scala declarations:

abstract class Shape
class Rectangle(...) extends Shape
class Circle(...) extends Shape

Thus, Rectangle <: Shape and Circle <: Shape.

(a) Suppose we have a function f: (Shape => Int) => Int. What could f potentially do with its argument? Does the type system allow us to pass a function of type Rectangle => Int to f?

(b) Suppose we have a function g: (Circle => Int) => Int. What could g potentially do with its argument? Does the type system allow us to pass a function of type Shape => Int to g?

Modules and Interfaces in Scala

Consider the following Scala object definition.

object A {
type T = Int
val c: T = 1
val d: T = 2
def f(x: T, y:T): T = x + y
}
object B {
type T = String
val c: T = "abcd"
val d: T = "1234"
def f(x: T, y: T) = x + y
}

(a) Write expressions showing how to access each of the elements of A and B.

(b) Suppose we execute the import statements

import A._
import B._
after finishing the declaration of A. What does unqualified identifier d refer to after that? What if we import in the opposite order?

(c) (+) Construct a Scala trait $ABlike$ defining bindings for all of the components of A and B, and so that we can assert that both A and B extend $ABlike$.

(d) (+) Define a function g taking an argument x: $ABlike$ that applies f to c and d. Apply it to both instances of $ABlike$ above. What is its return type?

(e) (+) Create an anonymous instance of $ABlike$ with $T = \text{Boolean}$ and call the function g on it.

3. Type parameters

Some types, such as lists, are naturally thought of as parameterized. For example, in Scala, the type $\text{List}[A]$ takes a parameter A, the type of elements of the lists.

Consider the following Scala code:

```scala
abstract class List[A]
  case class Nil[A]() extends List[A]
  case class Cons[A](head: A, tail: List[A]) extends List[A]
```

This defines a recursive data structure, consisting of lists. (Notice however that Nil is a case class and so it carries a type annotation and empty parameter list.)

(a) Using the same approach as above, define a type $\text{Tree}[A]$ for binary trees whose leaves are labeled by values of type A. There should be two constructors for such trees: $\text{Leaf}(a)$ constructing a leaf with data a, and $\text{Node}(t_1, t_2)$ taking two trees and constructing a tree.

(b) Define a recursive function sum that adds up all of the integers in an Tree[Int].

(c) Define a recursive function $\text{map}: \text{Tree}[A] => (A => B) => \text{Tree}[B]$ that applies a given function f: $A => B$ to all of the A values on the leaves of a $\text{Tree}[A]$.

(d) (+) Define a function $\text{flatten}: \text{Tree[Tree}[A]] => \text{Tree}[A]$.

(e) (+) Define a function $\text{flatMap}: (\text{Tree}[A]) => (A => \text{Tree}[B]) => \text{Tree}[B]

4. (+) Ad hoc polymorphism

Traits can also accommodate overloading and reuse of the same name for operations on different types. An operation such as size can be defined as part of a trait as follows:

```scala
trait HasSize { def size(): Int }
```

(a) Modify the definition of $\text{List}[A]$ above so that it extends HasSize, and define an appropriate size method for it.

(b) Modify the definition of $\text{Tree}[A]$ so that it extends HasSize and define its size operation.

(c) Write a function sameSize that takes two values of type HasSize and checks whether they have the same size.

(d) Call this function on a List[Int] and a Tree[String] to verify that the correct implementations of size are called for different types.